Question
Mathematics Question on Application of derivatives
The function f(x)=x2e−2x,x>0. Then the maximum value of f(x) is
A
e1
B
2e1
C
e21
D
e44
Answer
e21
Explanation
Solution
Given : f(x)=x2e−2x,x>0
f′(x)=x2.e−2x(−2)+e−2x.2x
put f′(x)=0⇒2e−2x.x(−x+1)=0
⇒ x = 1 or x = 0
f"(x)=(−4x2−6x+1)e−2x
f"(1)=−9e−2x<0
f"(0)=e−2x>0
∴ value of f(x) is maximum at x = 1
∵f(x)=x2.e−2x⇒f(1)=e−2=e21