Solveeit Logo

Question

Mathematics Question on Functions

The function f(x)=tanx4xf(x) = \tan x - 4x is strictly decreasing on

A

(π3,π3)\left( - \frac{\pi}{3} , \frac{\pi}{3} \right)

B

(π3,π2)\left( \frac{\pi}{3} , \frac{\pi}{2} \right)

C

(π3,π2)\left( - \frac{\pi}{3} , \frac{\pi}{2} \right)

D

(π2,π)\left( \frac{\pi}{2} ,\pi \right)

Answer

(π3,π3)\left( - \frac{\pi}{3} , \frac{\pi}{3} \right)

Explanation

Solution

The correct option is (A): (π3,π3)\left(\frac{-\pi}{3}, \frac{\pi}{3}\right).
f(x)=tanx4xf(x)=sec2x4f(x)=\tan x-4 x \Rightarrow f'(x)=\sec ^{2} x-4
When π3<x<π3,1<secx<2\frac{-\pi}{3} < x < \frac{\pi}{3}, 1 < \sec x < 2
Therefore, 1<sec2x<41 < \sec ^{2} x < 4
3<(sec2x4)<0\Rightarrow-3 < \left(\sec ^{2} x-4\right) < 0
Thus, for π3<x<π3,f(x)<0\frac{-\pi}{3} < x < \frac{\pi}{3}, f'(x) < 0
Hence, ff is strictly decreasing on
(π3,π3)\left(\frac{-\pi}{3}, \frac{\pi}{3}\right)