Solveeit Logo

Question

Mathematics Question on Exponential and Logarithmic Functions

The function f(x)=log(1+x)2x2+xf(x) = \log(1+x) - \frac{2x}{2+x} is increasing on

A

(,)(- \infty, \infty)

B

(1,)(- 1, \infty)

C

(,1)( \infty, -1)

D

(,0)(- \infty, 0)

Answer

(1,)(- 1, \infty)

Explanation

Solution

f(x)=log(1+x)2x2+xf(x) = \log(1+x) - \frac{2x}{2+x}
To simplify the expression, we can rewrite it as:
f(x)=log(1+x)2x2+xf(x) = \log(1+x) - \frac{2x}{2+x}
To find the derivative, we apply the logarithmic differentiation and the quotient rule:
f(x)=11+x2(12+x)2x(1(2+x)2)f'(x) = \frac{1}{1+x} - 2\left(\frac{1}{2+x}\right) - 2x \left(-\frac{1}{(2+x)^2}\right)
Simplifying further:
f(x)=11+x22+x+2x(2+x)2f'(x) = \frac{1}{1+x} - \frac{2}{2+x} + \frac{2x}{(2+x)^2}
Now, we need to determine where f(x)>0.f'(x) > 0.
To analyze the sign of f'(x), we can find the common denominator for the fractions:
f(x)=(2+x)(2+x)2(1+x)+2x(1+x)(2+x)2f'(x) = \frac{(2+x)(2+x) - 2(1+x) + 2x}{(1+x)(2+x)^2}

Expanding the numerator:
f(x)=4+4x+x222x+2x(1+x)(2+x)2f'(x) = \frac{4+4x+x^2 - 2 - 2x + 2x}{(1+x)(2+x)^2}

f(x)=x2(1+x)(2+x)2f'(x) = \frac{x^2}{(1+x)(2+x)^2}
Now, let's analyze the sign of f'(x) based on the numerator and denominator.
For the numerator, x2x^2 is always non-negative.
For the denominator, (1+x)(1+x) and (2+x)2(2+x)^2 are also always non-negative, except when x = -1.
Therefore, f'(x) is positive (greater than zero) when x1.x ≠ -1.
Hence, the function f(x)=log(1+x)2x2+xf(x) = \log(1+x) - \frac{2x}{2+x} is increasing on the interval (1,)(-1, \infty), which corresponds to option (B) (1,)(-1, \infty).