Solveeit Logo

Question

Mathematics Question on Functions

The function f(x)=xx26x16f(x) = \frac{x}{x^2 - 6x - 16}, xR2,8x \in \mathbb{R} - \\{-2, 8\\}

A

decreases in (2,8)(-2, 8) and increases in (,2)(8,)(-\infty, -2) \cup (8, \infty)

B

decreases in (,2)(2,8)(8,)(-\infty, -2) \cup (-2, 8) \cup (8, \infty)

C

decreases in (,2)(-\infty, -2) and increases in (8,)(8, \infty)

D

increases in (,2)(2,8)(8,)(-\infty, -2) \cup (-2, 8) \cup (8, \infty)

Answer

decreases in (,2)(2,8)(8,)(-\infty, -2) \cup (-2, 8) \cup (8, \infty)

Explanation

Solution

The given function is: f(x)=xx26x16f(x) = \frac{x}{x^2 - 6x - 16}
Step 1. Calculate the derivative f(x)f'(x):f(x)=(x2+16)(x26x16)2f'(x) = \frac{-(x^2 + 16)}{(x^2 - 6x - 16)^2}

Step 2. Since f(x)<0f'(x) < 0, the function f(x)f(x) is decreasing in all intervals where it is defined.**

Step 3. Therefore, f(x)f(x) is decreasing in (,2)(2,8)(8,)(-\infty, -2) \cup (-2, 8) \cup (8, \infty).**

The Correct Answer is:(,2)(2,8)(8,)(-\infty, -2) \cup (-2, 8) \cup (8, \infty)