Solveeit Logo

Question

Mathematics Question on Relations and functions

The function f(x)=x2+2x15x24x+9f(x) = \frac{x^2 + 2x - 15}{x^2 - 4x + 9}, xRx \in \mathbb{R} is:

A

both one-one and onto.

B

onto but not one-one

C

neither one-one nor onto

D

one-one but not onto

Answer

neither one-one nor onto

Explanation

Solution

Let g(x)=x24x+9g(x) = x^2 - 4x + 9.

The discriminant of g(x)g(x) is:

D=(4)24(1)(9)=1636=20.D = (-4)^2 - 4(1)(9) = 16 - 36 = -20.

Since D<0D < 0, g(x)>0 xRg(x) > 0 \ \forall x \in \mathbb{R}.

For f(x)f(x), consider:

f(x)=(x+5)(x3)x24x+9.f(x) = \frac{(x + 5)(x - 3)}{x^2 - 4x + 9}.

Evaluate f(x)f(x) at specific points:

f(5)=0,f(3)=0.f(-5) = 0, \quad f(3) = 0.

Since f(x)f(x) takes the same value at two different points (5 and 3)(-5 \text{ and } 3), f(x)f(x) is many-one.

Next, find the range of f(x)f(x):

y(x24x+9)=x2+2x15.y \cdot (x^2 - 4x + 9) = x^2 + 2x - 15.

Rearrange:

x2(y1)2x(2y+1)+(9y+15)=0.x^2(y - 1) - 2x(2y + 1) + (9y + 15) = 0.

For f(x)f(x) to be real, the discriminant of the quadratic in xx must satisfy:

D=4(2y+1)24(y1)(9y+15)0.D = 4(2y + 1)^2 - 4(y - 1)(9y + 15) \geq 0.

Simplify:

D=4[(2y+1)2(y1)(9y+15)].D = 4 \left[(2y + 1)^2 - (y - 1)(9y + 15)\right].

Expanding and simplifying:

D=4[4y2+4y+1(9y2+6y15)].D = 4 \left[4y^2 + 4y + 1 - (9y^2 + 6y - 15)\right]. D=4[5y22y+16].D = 4 \left[-5y^2 - 2y + 16\right].

Factorize:

D=4(5y+8)(y+2).D = 4(-5y + 8)(y + 2).

For D0D \geq 0, solve:

5y+80andy+20.-5y + 8 \geq 0 \quad \text{and} \quad y + 2 \geq 0.

This gives:

y[2,85].y \in \left[-2, \frac{8}{5}\right].

Thus, the range of f(x)f(x) is:

y[2,85].y \in \left[-2, \frac{8}{5}\right].

If the function is defined from f:RRf : \mathbb{R} \to \mathbb{R}, then the only correct answer is option (3).

f(x)f(x) is not onto. Therefore, f(x)f(x) is neither one-one nor onto.