Solveeit Logo

Question

Question: The function \[f(x) = \dfrac{{\ln \left[ {\pi + x} \right]}}{{\ln (e + x)}}\] is A. Increasing on...

The function f(x)=ln[π+x]ln(e+x)f(x) = \dfrac{{\ln \left[ {\pi + x} \right]}}{{\ln (e + x)}} is
A. Increasing on [0,]\left[ {0,\infty } \right]
B. Decreasing on [0,)\left[ {0,\infty } \right)
C. Decreasing on [0,πe)\left[ {0,\dfrac{\pi }{e}} \right) and Increasing on [πe,)\left[ {\dfrac{\pi }{e},\infty } \right)
D. Increasing on [0,πe)\left[ {0,\dfrac{\pi }{e}} \right) and decreasing on [πe,)\left[ {\dfrac{\pi }{e},\infty } \right)

Explanation

Solution

Find the derivative of the function as it can be used to determine whether the function is increasing or decreasing on any intervals in its domain.. If f(x)>0f'(x) > 0 at each point in an interval I, then the function is said to be increasing on I. f(x)<0f'(x) < 0 at each point in an interval I, then the function is said to be decreasing on I.

Complete step-by-step answer :
The derivative of a function of a real variable measures the sensitivity to change of the function value with respect to a change in its argument. Derivatives are a fundamental tool of calculus.
If f(x)>0f'(x) > 0 then ff is increasing on the interval, and if f(x)<0f'(x) < 0 then ff is decreasing on the interval.
We are given the function f(x)=ln[π+x]ln(e+x)f(x) = \dfrac{{\ln \left[ {\pi + x} \right]}}{{\ln (e + x)}}
Differentiating both side with respect to xx we get ,
f(x)=1π+xln(e+x)1e+xln(π+x)(ln(e+x))2f'(x) = \dfrac{{\dfrac{1}{{\pi + x}}\ln (e + x) - \dfrac{1}{{e + x}}\ln \left( {\pi + x} \right)}}{{{{\left( {\ln (e + x)} \right)}^2}}}
We will divide f(x)f'(x) into different functions so as to ease our calculation.
Let h(x)=1π+xln(e+x)1e+xln(π+x)h(x) = \dfrac{1}{{\pi + x}}\ln (e + x) - \dfrac{1}{{e + x}}\ln \left( {\pi + x} \right)
Let us consider g(x)=xlnxg(x) = x\ln x
Differentiating both side with respect to xx we get ,
g(x)=x×1x+lnx=1+lnxg'(x) = x \times \dfrac{1}{x} + \ln x = 1 + \ln x
We know that g(x)>0    x(1e,)g'(x) > 0\; \forall \;x \in \left( {\dfrac{1}{e},\infty } \right) and g(x)<0x(0,1e)g'(x) < 0\forall x \in \left( {0,\dfrac{1}{e}} \right)
Now we know that e<πe < \pi
Hence x(0,)\forall x \in \left( {0,\infty } \right) e+x<π+xe + x < \pi + x
And since g(x)g(x) is an increasing function for x>1ex > \dfrac{1}{e} . Therefore we have g(e+x)<g(π+x)g\left( {e + x} \right) < g\left( {\pi + x} \right)
Since we have assumed g(x)=xlnxg(x) = x\ln x
Therefore we get (e+x)ln(e+x)<(π+x)ln(π+x)\left( {e + x} \right)\ln \left( {e + x} \right) < \left( {\pi + x} \right)\ln \left( {\pi + x} \right)
On rearranging the terms we get ,
ln(e+x)(π+x)<ln(π+x)(e+x)\dfrac{{\ln \left( {e + x} \right)}}{{\left( {\pi + x} \right)}} < \dfrac{{\ln \left( {\pi + x} \right)}}{{\left( {e + x} \right)}}
Taking all the terms on one side we get ,
ln(e+x)(π+x)ln(π+x)(e+x)<0\dfrac{{\ln \left( {e + x} \right)}}{{\left( {\pi + x} \right)}} - \dfrac{{\ln \left( {\pi + x} \right)}}{{\left( {e + x} \right)}} < 0
Therefore we get h(x)<0h(x) < 0
Therefore f(x)=h(x)(ln(e+x))2<0f'(x) = \dfrac{{h(x)}}{{{{\left( {\ln (e + x)} \right)}^2}}} < 0 x[0,)\forall x \in \left[ {0,\infty } \right)
Therefore f(x)f(x) decreases for [0,)\left[ {0,\infty } \right) .
So, the correct answer is “Option B”.

Note: In determining intervals where a function is increasing or decreasing, you first find domain values where all critical points will occur; then, test all intervals in the domain of the function of these values to determine if the derivative is positive or negative.