Solveeit Logo

Question

Mathematics Question on Application of derivatives

The function f(x)=cos2xf(x) = cos^2x is strictly decreasing on

A

[0,π2]\left[0,\frac{\pi}{2}\right]

B

[0,π2)\left[0,\frac{\pi}{2}\right)

C

(0,π2)\left(0,\frac{\pi}{2}\right)

D

(0,π2]\left(0,\frac{\pi}{2}\right]

Answer

(0,π2)\left(0,\frac{\pi}{2}\right)

Explanation

Solution

We have, f(x)=cos2xf(x) = cos^2\, x
On differentiating both sides w.r.t. ?xx?, we get
f(x)=2cosxsinx=sin2xf'(x) = -2 \,cosx \, sinx = -sin2x
1sin2x1\because -1 \le sin\,2x \le 1
f(x)>0\therefore f'(x) > 0 for x(π2,0)x \in (\frac{-\pi}{2} , 0)
and f(x)<0f'(x) < 0 for x(0,π2) x\in (0, \frac{\pi}{2})
f(x)=cos2x\therefore f(x) = cos^2\,x is strictly decreasing on (0,π2)( 0, \frac{\pi}{2}).