Question
Mathematics Question on Continuity and differentiability
The function f:R→R defined by f(x)=limn→∞1+x2n+1−x2ncos2πx−x2nsinx−1 is continuous for all x in
A
R-{-1}
B
R-{-1,1}
C
R-{1}
D
R-{0}
Answer
R-{-1,1}
Explanation
Solution
f(x)=n→∞lim1+x2n+1−x2ncos(2πx)−x2nsin(x−1)
For∣x∣<1,f(x)=cos2πx,continuous function
|x | > 1,
f(x)=n→∞limx2n1+x−1x2n1cos2πx−sin(x−1)
=x−1−sin(x−1),continuous
For |x | = 1,
\begin{array}{l} f\left(x\right)=\left\\{\begin{matrix}1 & \text{if}&x=1 \\\\-1\left(1+\sin2\right)&\text{if} &x=-1 \\\\\end{matrix}\right. \end{array}
Now, x→1+limf(x)=−1, x→1−limf(x)=1,so discontinuous at x = 1
x→−1+limf(x)=1, x→−1−limf(x)=−2sin2,
so discontinuous at x = –1
∴f(x)is continuous for all x∈R–−1,1