Solveeit Logo

Question

Mathematics Question on Statistics

The function f(x)=(loge(1+ax)loge(1bx)x)f\left(x\right) = \left(\frac{\log_{e}\left(1+ax\right) - \log_{e}\left(1-bx\right)}{x}\right) is undefined at x=0x = 0. The value which should be assigned to ff at x=0x = 0 so that it is continuous at x=0x = 0 is

A

a+b2 \frac{a+b}{2}

B

a+ba + b

C

loge(ab)\log_e (ab)

D

aba - b

Answer

a+ba + b

Explanation

Solution

f(x)=(loge(1+ax)loge(1bx)x)f\left(x\right) = \left(\frac{\log_{e}\left(1+ax\right) - \log_{e}\left(1-bx\right)}{x}\right)
For f(x)f(x) to be continuous at x=0x = 0
limx0f(x)=limx0+f(x)=f(0)\lim_{x\to0^{-}} f\left(x\right) = \lim _{x\to 0^{+}} f\left(x\right) =f\left(0\right)
limx0(log(1+ax)log(1bx)x)\therefore \:\:\: \lim _{x\to 0^{-}} \left(\frac{\log\left(1+ax\right)-\log \left(1-bx\right)}{x}\right)
=limh0log(1ah)log(1+bh)h= \lim _{h\to 0} \frac{\log \left(1-ah\right)-\log \left(1+bh\right)}{-h} (00 \frac{0}{0} from)
Applying L' Hospital Rule, we get
limh0a1ahb1+bh1=limh0a1ah+b1+bh=a+b\lim_{h\to0} \frac{\frac{-a}{1-ah} - \frac{b}{1+bh}}{-1} = \lim _{h\to 0} \frac{a}{1-ah} +\frac{b}{1+bh} = a+b
f(0)=a+b\therefore \:\:\: f\left(0\right) =a+b for continuous at x=0 x=0