Solveeit Logo

Question

Question: The function \(f\left( x \right)=\dfrac{\ln \left( 1+ax \right)-\ln \left( 1-bx \right)}{x}\) not de...

The function f(x)=ln(1+ax)ln(1bx)xf\left( x \right)=\dfrac{\ln \left( 1+ax \right)-\ln \left( 1-bx \right)}{x} not defined at x = 0. The value which should be assigned to f, at x = 0 so that it is continuous at x = 0, is
a. a – b
b. a + b
c. ln a + ln b
d. None of these

Explanation

Solution

Hint: In order to solve this question, we should know about the concept of limits on logarithmic function, like limf(x)0ln(1+f(x))f(x)=1\underset{f\left( x \right)\to 0}{\mathop{\lim }}\,\dfrac{\ln \left( 1+f\left( x \right) \right)}{f\left( x \right)}=1. So, we will try to form the given function in this manner to apply the limit. Now, the question says that the function should be continuous at x = 0, it means, if limx0f(x)\underset{x\to 0}{\mathop{\lim }}\,f\left( x \right) exists, f(x)f\left( x \right) will be continuous at x = 0. By using this concept, we will get the answer.

Complete step-by-step answer:

In this question, we have been asked to find the value of f(x)=ln(1+ax)ln(1bx)xf\left( x \right)=\dfrac{\ln \left( 1+ax \right)-\ln \left( 1-bx \right)}{x} at x = 0 such that the function becomes continuous at x = 0. To solve this question, we will find the limits of f(x)f\left( x \right) at x = 0 to get the value of f(x)f\left( x \right) such that it will become continuous at x = 0. So, we can say, for continuous function, limx0f(x)\underset{x\to 0}{\mathop{\lim }}\,f\left( x \right) should exist. Now, let us calculate limx0f(x)\underset{x\to 0}{\mathop{\lim }}\,f\left( x \right). So, we can write it as,
limx0f(x)=limx0ln(1+ax)ln(1bx)x\underset{x\to 0}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\ln \left( 1+ax \right)-\ln \left( 1-bx \right)}{x}
We can further write it as,
limx0f(x)=limx0[ln(1+ax)xln(1bx)x] limx0f(x)=limx0ln(1+ax)xlimx0ln(1bx)x \begin{aligned} & \underset{x\to 0}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to 0}{\mathop{\lim }}\,\left[ \dfrac{\ln \left( 1+ax \right)}{x}-\dfrac{\ln \left( 1-bx \right)}{x} \right] \\\ & \underset{x\to 0}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\ln \left( 1+ax \right)}{x}-\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\ln \left( 1-bx \right)}{x} \\\ \end{aligned}
Now, we will multiply and divide ln(1+ax)x\dfrac{\ln \left( 1+ax \right)}{x} by (a) and limx0ln(1bx)x\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\ln \left( 1-bx \right)}{x} by (-b). So, we get, limx0f(x)=limx0aln(1+ax)axlimx0(b)ln(1bx)(b)x\underset{x\to 0}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{a\ln \left( 1+ax \right)}{ax}-\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\left( -b \right)\ln \left( 1-bx \right)}{\left( -b \right)x}
Now, we know that limf(x)0ln(1+f(x))f(x)=1\underset{f\left( x \right)\to 0}{\mathop{\lim }}\,\dfrac{\ln \left( 1+f\left( x \right) \right)}{f\left( x \right)}=1. So, for f(x)=axf\left( x \right)=ax, we get limax0ln(1+ax)ax=1\underset{ax\to 0}{\mathop{\lim }}\,\dfrac{\ln \left( 1+ax \right)}{ax}=1.
And for f(x)=bxf\left( x \right)=-bx, we get limbx0ln(1+(b)x)(b)x=1\underset{-bx\to 0}{\mathop{\lim }}\,\dfrac{\ln \left( 1+\left( -b \right)x \right)}{\left( -b \right)x}=1.
Therefore, we can write, limx0f(x)\underset{x\to 0}{\mathop{\lim }}\,f\left( x \right) as,
limx0f(x)=a×1(b) limx0f(x)=a+b \begin{aligned} & \underset{x\to 0}{\mathop{\lim }}\,f\left( x \right)=a\times 1-\left( -b \right) \\\ & \underset{x\to 0}{\mathop{\lim }}\,f\left( x \right)=a+b \\\ \end{aligned}
Hence, we can say that f(x)f\left( x \right) should be assigned as (a + b) at x= 0 so that it is continuous at x = 0.
Therefore, option (b) is the correct answer.

Note: While solving this question, there are possibilities that we might get stuck at limx0ln(1bx)x\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\ln \left( 1-bx \right)}{x}. So, we can write this as limx0ln(1+(b)x)x\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\ln \left( 1+\left( -b \right)x \right)}{x} and then multiply its numerator and denominator by (-b) and then applying the property, limf(x)0ln(1+f(x))f(x)=1\underset{f\left( x \right)\to 0}{\mathop{\lim }}\,\dfrac{\ln \left( 1+f\left( x \right) \right)}{f\left( x \right)}=1 and simplifying to get the answer. Also, there are chances that we might make calculation mistakes. So, we have to be very careful while solving this question.