Solveeit Logo

Question

Question: The function f defined by \(\lim_{x \rightarrow 0^{+}}\frac{[x]}{x}\)...

The function f defined by limx0+[x]x\lim_{x \rightarrow 0^{+}}\frac{[x]}{x}

A

Continuous and derivable at 118x2\frac{1}{\sqrt{18 - x^{2}}}

B

Neither continuous nor derivable at Limx3(f(x)f(3)x3)\underset{x \rightarrow 3}{Lim}\left( \frac{f(x) - f(3)}{x - 3} \right)

C

Continuous but not derivable at limn(enπ)1/n\lim_{n \rightarrow \infty}\left( \frac{e^{n}}{\pi} \right)^{1/n}

D

None of these

Answer

Continuous and derivable at 118x2\frac{1}{\sqrt{18 - x^{2}}}

Explanation

Solution

We have,

limx0f(x)=limx0sinx2x=limx0(sinx2x2)x=1×0=0=f(0)\lim _ { x \rightarrow 0 } f ( x ) = \lim _ { x \rightarrow 0 } \frac { \sin x ^ { 2 } } { x } = \lim _ { x \rightarrow 0 } \left( \frac { \sin x ^ { 2 } } { x ^ { 2 } } \right) x = 1 \times 0 = 0 = f ( 0 ) So, f(x)f ( x ) is continuous at x=0x = 0, f(x)f ( x ) is also derivable at x=0x = 0, because limx0f(x)f(0)x0=limx0sinx2x2\lim _ { x \rightarrow 0 } \frac { f ( x ) - f ( 0 ) } { x - 0 } = \lim _ { x \rightarrow 0 } \frac { \sin x ^ { 2 } } { x ^ { 2 } } = 1 exists finitely.