Solveeit Logo

Question

Question: The function f defined by f(x) =\(f(x) = \sqrt{\frac{8}{1 + \cos x} + \frac{8}{1 - \cos x}}\) for x ...

The function f defined by f(x) =f(x)=81+cosx+81cosxf(x) = \sqrt{\frac{8}{1 + \cos x} + \frac{8}{1 - \cos x}} for x ≠ 0 for x = 0 is

A

Continuous and derivable at x = 0

B

Neither continuous nor derivable at x = 0

C

Continuous but not derivable at x = 0

D

None of these

Answer

Continuous and derivable at x = 0

Explanation

Solution

The function is continuous at x = 0, because

limx0f(x)=limx0sinx2x=limx0(sinx2x2)\lim _ { x \rightarrow 0 } f ( x ) = \lim _ { x \rightarrow 0 } \frac { \sin x ^ { 2 } } { x } = \lim _ { x \rightarrow 0 } \left( \frac { \sin x ^ { 2 } } { x ^ { 2 } } \right). x = 0 = f(0).

Also

= 1

and

Lf(0)=limh0f(0h)f(0)h=limh0sinh2h0h=limh0sinh2h2L f ^ { \prime } ( 0 ) = \lim _ { h \rightarrow 0 } \frac { f ( 0 - h ) - f ( 0 ) } { - h } = \lim _ { h \rightarrow 0 } \frac { \frac { \sinh ^ { 2 } } { - h } - 0 } { - h } = \lim _ { h \rightarrow 0 } \frac { \sinh ^ { 2 } } { h ^ { 2 } }= 1

so that, f(x) is derivable at x = 0