Solveeit Logo

Question

Question: The function defined by the equation \(xy - \log y = 1\) satisfies \(x\left( {yy'' + y{'^2}} \right)...

The function defined by the equation xylogy=1xy - \log y = 1 satisfies x(yy+y2)y+kyy=0x\left( {yy'' + y{'^2}} \right) - y'' + kyy' = 0 . Find the value of k.

Explanation

Solution

It is given that the equation xylogy=1xy - \log y = 1 satisfies x(yy+y2)y+kyy=0x\left( {yy'' + y{'^2}} \right) - y'' + kyy' = 0. Also, it can be seen that on doing the double derivative of the equation xylogy=1xy - \log y = 1, we get the type of equation x(yy+y2)y+kyy=0x\left( {yy'' + y{'^2}} \right) - y'' + kyy' = 0.
Then, write the derived equation in the form of x(yy+y2)y+kyy=0x\left( {yy'' + y{'^2}} \right) - y'' + kyy' = 0 and compare to get the value of k.

Complete step by step solution:
The given equation in the question is xylogy=1xy - \log y = 1 .
Also, it is given that the equation xylogy=1xy - \log y = 1 satisfies x(yy+y2)y+kyy=0x\left( {yy'' + y{'^2}} \right) - y'' + kyy' = 0 . It can be seen that on doing the double derivative of the equation xylogy=1xy - \log y = 1 , we get the type of equation x(yy+y2)y+kyy=0x\left( {yy'' + y{'^2}} \right) - y'' + kyy' = 0 .
So, firstly, we will differentiate the equation xylogy=1xy - \log y = 1 with respect to x.
ddx(xylogy)=ddx(1) ddx(xy)ddx(logy)=0  \Rightarrow \dfrac{d}{{dx}}\left( {xy - \log y} \right) = \dfrac{d}{{dx}}\left( 1 \right) \\\ \Rightarrow \dfrac{d}{{dx}}\left( {xy} \right) - \dfrac{d}{{dx}}\left( {\log y} \right) = 0 \\\
Apply the formula for derivative of product of two functions u and v ddx(uv)=udvdx+vdudx\dfrac{d}{{dx}}\left( {uv} \right) = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}} on the function xy.
xdydx+ydxdx1ydydx=0 xy+y1yy=0(dydx=y) xyy+y2yy=0 xyy+y2y=0  \Rightarrow x\dfrac{{dy}}{{dx}} + y\dfrac{{dx}}{{dx}} - \dfrac{1}{y}\dfrac{{dy}}{{dx}} = 0 \\\ \Rightarrow xy' + y - \dfrac{1}{y}y' = 0\left( { \Rightarrow \dfrac{{dy}}{{dx}} = y'} \right) \\\ \Rightarrow \dfrac{{xyy' + {y^2} - y'}}{y} = 0 \\\ \Rightarrow xyy' + {y^2} - y' = 0 \\\
Now, in order to get the double derivative, we need to differentiate the equation xyy+y2y=0xyy' + {y^2} - y' = 0 with respect to x.
ddx(xyy+y2y)=ddx(0) ddx(xyy)+ddx(y2)ddx(y)=0  \Rightarrow \dfrac{d}{{dx}}\left( {xyy' + {y^2} - y'} \right) = \dfrac{d}{{dx}}\left( 0 \right) \\\ \Rightarrow \dfrac{d}{{dx}}\left( {xyy'} \right) + \dfrac{d}{{dx}}\left( {{y^2}} \right) - \dfrac{d}{{dx}}\left( {y'} \right) = 0 \\\
Applying the formula for derivative of triple product ddx(uvw)=dudxvw+udvdxw+uvdwdx\dfrac{d}{{dx}}\left( {uvw} \right) = \dfrac{{du}}{{dx}}vw + u\dfrac{{dv}}{{dx}}w + uv\dfrac{{dw}}{{dx}} on function xyyxyy'
dxdx(yy)+x(dydx)y+xy(dydx)+2ydydxy=0 yy+xyy+xyy+2yyy=0 x(y2+yy)+3yyy=0 x(yy+y2)y+3yy=0  \Rightarrow \dfrac{{dx}}{{dx}}\left( {yy'} \right) + x\left( {\dfrac{{dy}}{{dx}}} \right)y' + xy\left( {\dfrac{{dy'}}{{dx}}} \right) + 2y\dfrac{{dy}}{{dx}} - y'' = 0 \\\ \Rightarrow yy' + xy'y' + xyy'' + 2yy' - y'' = 0 \\\ \Rightarrow x\left( {y{'^2} + yy''} \right) + 3yy' - y'' = 0 \\\ \Rightarrow x\left( {yy'' + y{'^2}} \right) - y'' + 3yy' = 0 \\\
Now, to get the required value of k, we will compare the equation x(yy+y2)y+3yy=0x\left( {yy'' + y{'^2}} \right) - y'' + 3yy' = 0 with x(yy+y2)y+kyy=0x\left( {yy'' + y{'^2}} \right) - y'' + kyy' = 0 .

Thus, on comparing we get k=3k = 3.

Note:
While differentiating the given equation xylogy=1xy - \log y = 1 , we have to differentiate both x and y as they both are variables.
Also, when comparing the derived equation after derivation the equation xylogy=1xy - \log y = 1 twice, we have to write the derived equation in the form of x(yy+y2)y+kyy=0x\left( {yy'' + y{'^2}} \right) - y'' + kyy' = 0 or else we may get the required answer wrong.