Solveeit Logo

Question

Question: The function arctan(sinx + cosx) is increasing in the interval [a] \(\left( \dfrac{\pi }{4},\dfrac...

The function arctan(sinx + cosx) is increasing in the interval
[a] (π4,π2)\left( \dfrac{\pi }{4},\dfrac{\pi }{2} \right)
[b] (π2,π4)\left( -\dfrac{\pi }{2},\dfrac{\pi }{4} \right)
[c] (0,π2)\left( 0,\dfrac{\pi }{2} \right)
[d] (π2,π2)\left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right)

Explanation

Solution

Hint: Use the fact that if f(x) is an increasing function, then f(x)0f'\left( x \right)\ge 0. Alternatively, use the fact that if f(x) is an increasing function, then fog(x)fog\left( x \right) is an increasing function whenever g(x) is increasing and fog(x)fog\left( x \right) is a decreasing function whenever g(x) is a decreasing function.

Complete step-by-step solution -

We have f(x) = arctan(sinx+cosx)
Differentiating both sides, we get
f(x)=ddx(arctan(sinx+cosx))f'\left( x \right)=\dfrac{d}{dx}\left( \arctan \left( \sin x+\cos x \right) \right)
We know from chain rule of differentiation that ddx(f(g(x)))=dd(g(x))f(g(x))ddx(g(x))\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)=\dfrac{d}{d\left( g\left( x \right) \right)}f\left( g\left( x \right) \right)\dfrac{d}{dx}\left( g\left( x \right) \right)
Hence f(x)=dd(sinx+cosx)arctan(sinx+cosx)ddx(sinx+cosx)f'\left( x \right)=\dfrac{d}{d\left( \sin x+\cos x \right)}\arctan \left( \sin x+\cos x \right)\dfrac{d}{dx}\left( \sin x+\cos x \right)
We know that ddxarctanx=11+x2\dfrac{d}{dx}\arctan x=\dfrac{1}{1+{{x}^{2}}}
Hence we have
f(x)=1(sinx+cosx)2+1ddx(sinx+cosx)f'\left( x \right)=\dfrac{1}{{{\left( \sin x+\cos x \right)}^{2}}+1}\dfrac{d}{dx}\left( \sin x+\cos x \right)
We know that ddx(f(x)+g(x))=ddx(f(x))+ddx(g(x))\dfrac{d}{dx}\left( f\left( x \right)+g\left( x \right) \right)=\dfrac{d}{dx}\left( f\left( x \right) \right)+\dfrac{d}{dx}\left( g\left( x \right) \right)
Using , we get
f(x)=11+(sinx+cosx)2(ddxsinx+ddxcosx)f'\left( x \right)=\dfrac{1}{1+{{\left( \sin x+\cos x \right)}^{2}}}\left( \dfrac{d}{dx}\sin x+\dfrac{d}{dx}\cos x \right)
Since ddxsinx=cosx\dfrac{d}{dx}\sin x=\cos x and ddxcosx=sinx\dfrac{d}{dx}\cos x=-\sin x, we have
f(x)=11+(sinx+cosx)2(cosxsinx)f'\left( x \right)=\dfrac{1}{1+{{\left( \sin x+\cos x \right)}^{2}}}\left( \cos x-\sin x \right)
Now for f(x) to be increasing, we have
f(x)0f'\left( x \right)\ge 0
Hence, we have
11+(sinx+cosx)2(cosxsinx)0\dfrac{1}{1+{{\left( \sin x+\cos x \right)}^{2}}}\left( \cos x-\sin x \right)\ge 0
Since 11+(sinx+cosx)2>0\dfrac{1}{1+{{\left( \sin x+\cos x \right)}^{2}}}>0 , we have
(cosxsinx)0\left( \cos x-\sin x \right)\ge 0
Hence cosx>sinx\cos x>\sin x
In the interval (π2,π4)\left( -\dfrac{\pi }{2},\dfrac{\pi }{4} \right) cosx>sinx.
Hence we have
In the interval (π2,π4)\left( -\dfrac{\pi }{2},\dfrac{\pi }{4} \right) f(x) is increasing.
Hence option [b] is correct.

Note: Alternatively, we have,
arc tanx is an increasing function. Hence arctan(cosx+sinx) is increasing whenever sinx+cosx is increasing.
Now sinx +cosx =12(sin(xπ4))=\dfrac{1}{\sqrt{2}}\left( \sin \left( x-\dfrac{\pi }{4} \right) \right)
Now we know that sinx is an increasing function in the interval (π2,π2)\left( \dfrac{-\pi }{2},\dfrac{\pi }{2} \right)
Hence sinx+cosx\sin x+\cos x is increasing in the interval (π2π4,π2π4)=(3π4,π4)\left( \dfrac{-\pi }{2}-\dfrac{\pi }{4},\dfrac{\pi }{2}-\dfrac{\pi }{4} \right)=\left( \dfrac{-3\pi }{4},\dfrac{\pi }{4} \right)
Hence sinx + cosx is increasing in the interval (π2,π4)\left( \dfrac{-\pi }{2},\dfrac{\pi }{4} \right)
Hence option [b] is correct.
Graph of arctan(sinx+cosx)

As is evident from the graph that f(x) is increasing in interval [A,B], where A=π2\text{A=}\dfrac{-\pi }{2} and B=π4\text{B=}\dfrac{\pi }{4}.