Solveeit Logo

Question

Physics Question on rotational motion

The front solid cylinder has mass M3\frac{M}{3} while the back one solid cylinder has mass 2M3\frac{2M}{3}. The centers of these cylinders are connected by massless rod as shown. Both the cylinders have same radii R. The system is released from rest on the inclined plane. The cylinders roll down. The speed of the rod after system descending a vertical distance h is

A

2gh3\sqrt{\frac{2gh}{3}}

B

2gh\sqrt{2gh}

C

4gh3\sqrt{\frac{4gh}{3}}

D

3gh7\sqrt{\frac{3gh}{7}}

Answer

4gh3\sqrt{\frac{4gh}{3}}

Explanation

Solution

Applying conservation of energy, E1=E2E _{1} = E _{2} or ΔU1+ΔKE1=ΔU2+ΔKE2\Delta U _{1}+\Delta KE _{1} =\Delta U _{2}+\Delta KE _{2} (M1+M2)gh+0\Rightarrow\left( M _{1}+ M _{2}\right) gh +0 =0+12(M1+M2)v2+12(I1+I2)ω2=0+\frac{1}{2}\left( M _{1}+ M _{2}\right) v ^{2}+\frac{1}{2}\left( I _{1}+ I _{2}\right) \omega^{2} Given, M1=M3M _{1}=\frac{ M }{3} and M2=2M3M _{2}=\frac{2 M }{3} I=12MR2\because I =\frac{1}{2} MR ^{2} In case of pure rolling, vCM=Rωv _{ CM }= R \omega (M3+2M3)gh\therefore\left(\frac{ M }{3}+\frac{2 M }{3}\right) gh =12[M3+2M3]v2+1212[M3+2M3]R2ω2=\frac{1}{2}\left[\frac{ M }{3}+\frac{2 M }{3}\right] v ^{2}+\frac{1}{2} \cdot \frac{1}{2}\left[\frac{ M }{3}+\frac{2 M }{3}\right] R ^{2} \omega^{2} Mgh=12Mv2+1212Mv2\Rightarrow Mgh =\frac{1}{2} Mv ^{2}+\frac{1}{2} \cdot \frac{1}{2} Mv ^{2} [VCM=Rω]\left[\because V _{ CM }= R \omega\right] gh=12v2+14v2\Rightarrow gh =\frac{1}{2} v ^{2}+\frac{1}{4} v ^{2} 3v24=gh\Rightarrow \frac{3 v ^{2}}{4}= gh v=4gh3\therefore v =\sqrt{\frac{4 gh }{3}}