Solveeit Logo

Question

Question: The fringes width in a Young’s double slit interference pattern is 2.4×10<sup>-4</sup> m, when red l...

The fringes width in a Young’s double slit interference pattern is 2.4×10-4 m, when red light of wavelength 6400 Å is used. How much will it change, if blue light os wavelength 400Å is used?

A

9×10-4 m

B

0.9 ×10-4 m

C

4.5× 10-4 m

D

0.45 × 10-4 m

Answer

0.9 ×10-4 m

Explanation

Solution

: Here, β1=2.4×104m\beta_{1} = 2.4 \times 10^{- 4}m

λ1=6400A˚,λ2=4000A˚\lambda_{1} = 6400Å,\lambda_{2} = 4000Å

β2β1=λ2λ1=40006400=58\because\frac{\beta_{2}}{\beta_{1}} = \frac{\lambda_{2}}{\lambda_{1}} = \frac{4000}{6400} = \frac{5}{8}

Or β2=58×β1=58×2.4×104=1.5×104m\beta_{2} = \frac{5}{8} \times \beta_{1} = \frac{5}{8} \times 2.4 \times 10^{- 4} = 1.5 \times 10^{- 4}m

Decreases in fringe width

Δβ=β1β2=(2.41.5)×104=0.9×104m\Delta\beta = \beta_{1} - \beta_{2} = (2.4 - 1.5) \times 10^{- 4} = 0.9 \times 10^{- 4}m