Solveeit Logo

Question

Physics Question on Units and measurement

The frequency of vibration of string is given by v=P2l[Fm]1/2v=\frac{P}{2l}{{\left[ \frac{F}{m} \right]}^{1/2}} Here pp is number of segments in the string and ll is the length. The dimensional formula for mm will be:

A

[M0LT1]\left[ {{M}^{0}}L{{T}^{-1}} \right]

B

[ML0T1]\left[ M{{L}^{0}}{{T}^{-1}} \right]

C

[ML1T0]\left[ M{{L}^{-1}}{{T}^{0}} \right]

D

[M0L0T0]\left[ {{M}^{0}}{{L}^{0}}{{T}^{0}} \right]

Answer

[ML1T0]\left[ M{{L}^{-1}}{{T}^{0}} \right]

Explanation

Solution

Put the dimensions for each physical quantity in the given relation. Given,
v=p2l[Fm]1/2v=\frac{p}{2 l}\left[\frac{F}{m}\right]^{1 / 2}
Squaring the equation on either side, we have
v2=p24l2[Fm]v^{2}=\frac{p^{2}}{4 l^{2}}\left[\frac{F}{m}\right]
m=p2F4l2v\Rightarrow m=\frac{p^{2} F}{4 l^{2} v}
Putting the dimensions of equations on RHS,
we get F=[MLT2],l=[L],v=[T1],F=\left[M L T^{-2}\right], l=[L], v=\left[T^{-1}\right],
pp being a number is dimensionless, we have
[m]=[MLT2][L2][T1]2{[m]=\frac{\left[M L T^{-2}\right]}{\left[L^{2}\right]\left[T^{-1}\right]^{2}}}
=[ML1T0]=\left[M L^{-1} T^{0}\right]