Solveeit Logo

Question

Chemistry Question on Structure of atom

The frequency of radiation emitted when the electron falls from n=4n = 4 to n=1n = 1 in a hydrogen atom will be (Given ionisation energy of H=2.18×1018H = 2.18\times 10^{18} J atom1atom^{-1} and h=6.625×1034Js)h = 6.625 \times 10^{-34} Js)

A

1.54×1015s11.54 \times 10^{15} s^{-1}

B

1.03×1015s11.03\times 10^{15} s^{-1}

C

3.08×1015s13.08\times 10^{15} s^{-1}

D

2.00×1015s12.00\times 10^{15} s^{-1}

Answer

3.08×1015s13.08\times 10^{15} s^{-1}

Explanation

Solution

The correct answer is C:3.08×1015s13.08\times 10^{15} s^{-1}
Ionisation energy of H=2.18×1018Jatom1H = 2.18 \times 10^{-18} J atom^{-1}
E1\therefore\, \, \, \, \, \, \, \, \, \, E_1 ( Energy of 1st orbit of H-atom)
=2.18×1018Jatom1\, \, \, \, \, \, \, \, \, \, \, = - 2.18 \times 10^{-18} J atom^{-1}
En=2.18×1018n2Jatom1\therefore\, \, \, \, \, \, \, E_n=\frac{-2.18\times10^{-18}}{n^2}J\, atom^{-1}
Z=1Z = 1 for HatomH-atom
ΔE=E4E1\Delta E = E_4 - E_1
=2.18×1018422.18×101812\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, =\frac{-2.18\times10^{-18}}{4^2}-\frac{-2.18\times10^{-18}}{1^2}
=2.18×1018×[142112]\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, =-2.18\times 10^{-18}\times\Bigg[\frac{1}{4^2}-\frac{1}{1^2}\Bigg]
ΔE=2.18×1018×1516\, \, \, \, \, \, \, \, \, \, \, \, \, \, \Delta E=-2.18\times 10^{18}\times -\frac{15}{16}
=+2.0437×1018Jatom1\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, =+2.0437\times 10^{-18} J\, atom^{-1}
v=ΔEh\therefore\, \, \, \, \, \, \, \, \, \, v=\frac{\Delta E}{h}
=2.0437×1018Jatom16.6256×1034Js\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, =\frac{2.0437 \times 10^{-18} J\, atom^{-1}}{6.6256\times 10^{-34}J\, s}
=3.084×1015s1atom1\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, =3.084 \times 10^{15} s^{-1}\, atom^{-1}