Solveeit Logo

Question

Physics Question on Alternating current

The frequency of an alternating current is 50 Hz. What is the minimum time taken by current to reach its peak value from rms value?

A

0.02s0.02\,s

B

5×1035\times10^{-3} s

C

10×10310\times10^{-3} s

D

2.5×1032.5\times10^{-3} s

Answer

2.5×1032.5\times10^{-3} s

Explanation

Solution

We know that Vrms=V0sinωtV_{rms}=V_{0} \, sin \, \omega t V02=V0sinωt\frac{V_{0}}{\sqrt{2}}=V_{0} sin\, \omega t sinωt=(12)\therefore\, sin \, \omega t=\left(\frac{1}{\sqrt{2}}\right) i.e.,ωt=π42πT.t=π4i.e., \omega t=\frac{\pi}{4} \Rightarrow \frac{2 \pi}{T}. t=\frac{\pi}{4} t=T8\therefore\, t=\frac{T}{8} Time for current to reach from rms value to peak value is i.e.,lrmsl0 l_{rms} \rightarrow l_{0} T4T8=T8(I02I0)\frac{T}{4}-\frac{T}{8}=\frac{T}{8} \quad\left(\frac{I_{0}}{\sqrt{2}}\to I_{0}\right) f=50t=I8f=50 \quad\therefore\, t=\frac{I}{8} =150×8=1400=0.25×102=\frac{1}{50\times8}=\frac{1}{400}=0.25\times10^{-2} =2.5×103sec[D]iscorrect.=2.5\times10^{-3} sec \, \therefore\, \left[D\right] is\, correct.