Solveeit Logo

Question

Question: The freezing point depression of a 0.10 M solution of formic acid is -0.2046°C. What is the equilibr...

The freezing point depression of a 0.10 M solution of formic acid is -0.2046°C. What is the equilibrium constant for the reaction at 298 K?

HCOO(aq)+H2O(l)HCOOH(aq)+OH(aq)HCOO^-(aq) + H_2O(l) \rightleftharpoons HCOOH (aq) + OH^- (aq)

(Given: Kf(H2O)=1.86Kkgmol1K_f(H_2O) = 1.86K kg mol^{-1}, Molarity = molality)

A

1.11 × 10-3

B

9 × 10-12

C

9 × 10-13

D

1.1 × 10-11

Answer

9 × 10-12

Explanation

Solution

Here's how to determine the equilibrium constant for the reaction:

  1. Calculate the van't Hoff factor (i):

    • Use the formula: ΔTf=iKfm\Delta T_f = i \cdot K_f \cdot m
    • Where:
      • ΔTf=0.2046\Delta T_f = 0.2046 °C (freezing point depression)
      • Kf=1.86K_f = 1.86 K kg/mol (cryoscopic constant of water)
      • m=0.10m = 0.10 mol/kg (molality of the solution)
    • Solving for ii: i=0.20461.860.10=1.10i = \frac{0.2046}{1.86 \cdot 0.10} = 1.10
  2. Determine the degree of dissociation (α):

    • For a weak acid, i=1+αi = 1 + \alpha
    • Therefore, α=i1=1.101=0.10\alpha = i - 1 = 1.10 - 1 = 0.10
  3. Calculate the acid dissociation constant (KaK_a) for formic acid:

    • HCOOH(aq)HCOO(aq)+H+(aq)HCOOH (aq) \rightleftharpoons HCOO^- (aq) + H^+ (aq)
    • [HCOOH]=C(1α)=0.10(10.10)=0.09[HCOOH] = C(1-\alpha) = 0.10(1-0.10) = 0.09 M
    • [HCOO]=Cα=0.10×0.10=0.01[HCOO^-] = C\alpha = 0.10 \times 0.10 = 0.01 M
    • [H+]=Cα=0.10×0.10=0.01[H^+] = C\alpha = 0.10 \times 0.10 = 0.01 M
    • Ka=[HCOO][H+][HCOOH]=(0.01)(0.01)0.09=1.11×103K_a = \frac{[HCOO^-][H^+]}{[HCOOH]} = \frac{(0.01)(0.01)}{0.09} = 1.11 \times 10^{-3}
  4. Calculate the hydrolysis constant (KhK_h):

    • The reaction of interest is: HCOO(aq)+H2O(l)HCOOH(aq)+OH(aq)HCOO^-(aq) + H_2O(l) \rightleftharpoons HCOOH (aq) + OH^- (aq)
    • Kh=KwKaK_h = \frac{K_w}{K_a}, where Kw=1.0×1014K_w = 1.0 \times 10^{-14} (ionic product of water)
    • Kh=1.0×10141.11×1039×1012K_h = \frac{1.0 \times 10^{-14}}{1.11 \times 10^{-3}} \approx 9 \times 10^{-12}

Therefore, the equilibrium constant for the reaction is 9×10129 \times 10^{-12}.