Solveeit Logo

Question

Question: The fractional part of a real number x is \(x - \left[ x \right]\), where \(\left[ x \right]\) is th...

The fractional part of a real number x is x[x]x - \left[ x \right], where [x]\left[ x \right] is the greatest integer less than or equal to x. Let F1{F_1} and F2{F_2} be the fractional parts of (44+2017)2017{\left( {44 + \sqrt {2017} } \right)^{2017}} and (442017)2017{\left( {44 - \sqrt {2017} } \right)^{2017}} respectively. Then F1+F2{F_1} + {F_2} lies between the numbers.
A. 0and 0.45
B. 0.45 and 0.9
C. 0.9 and 1.35
D. 1.35 and 1.8

Explanation

Solution

In the question we will use the expansion (ab)n=nC0anb0nC1a(n1)b1+nC2a(n2)b2+........+nCna0bn{\left( {a - b} \right)^n}{ = ^n}{C_0}{a^n}{b^0}{ - ^n}{C_1}{a^{\left( {n - 1} \right)}}{b^1}{ + ^n}{C_2}{a^{(n - 2)}}{b^2} + ........{ + ^n}{C_n}{a^0}{b^n} and find the integral part and fractional part i.e. the largest that doesn’t exceeds x is an integral part and the difference \left\\{ x \right\\} = x - \left[ x \right] is called fractional part. Use this to find between which numbers F1+F2{F_1} + {F_2} lies.

Complete step by step answer:
According to the given information, we have x[x]x - \left[ x \right]which is a fractional part of the real number x where [x]x\left[ x \right] \leqslant x and we have fractional parts F1{F_1} and F2{F_2} which are fractional part of (44+2017)2017{\left( {44 + \sqrt {2017} } \right)^{2017}} and (442017)2017{\left( {44 - \sqrt {2017} } \right)^{2017}}
For (44+2017)2017{\left( {44 + \sqrt {2017} } \right)^{2017}}using the formula of expansion which is given as (ab)n=nC0anb0nC1a(n1)b1+nC2a(n2)b2+........+nCna0bn{\left( {a - b} \right)^n}{ = ^n}{C_0}{a^n}{b^0}{ - ^n}{C_1}{a^{\left( {n - 1} \right)}}{b^1}{ + ^n}{C_2}{a^{(n - 2)}}{b^2} + ........{ + ^n}{C_n}{a^0}{b^n} we get
(442017)2017=442017 2017C0442016 2017C12017+442015 2017C2(2017)2442014 2017C3(2017)3+........{\left( {44 - \sqrt {2017} } \right)^{2017}} = {44^{2017}}{{\text{ }}^{2017}}{C_0} - {44^{2016}}{{\text{ }}^{2017}}{C_1}\left| {\sqrt {2017} } \right| + {44^{2015}}{{\text{ }}^{2017}}{C_2}{\left( {\sqrt {2017} } \right)^2} - {44^{2014}}{{\text{ }}^{2017}}{C_3}{\left( {\sqrt {2017} } \right)^3} + ........
So, only odd powers of 2017\sqrt {2017} have fractional part and other terms have zero fractional part
Let the sum of odd powers is m.abc where m=[x]m = \left[ x \right] and abc is\left\\{ x \right\\}
Also let the sum of even powers in n which is a positive integer
Therefore, (442017)2017=nm.abc{\left( {44 - \sqrt {2017} } \right)^{2017}} = n - m.abc
\Rightarrow nm0.abcn - m - 0.abc
\Rightarrow \underbrace {\left( {n - m - 1} \right)}_{Integralpart\left[ x \right]} + \underbrace {\left( {1 - 0.abc} \right)}_{fractionalpart\left\\{ x \right\\}}
Similarly, for(44+2017)2017=n+m.abc=(n+m)integerpart+(0.abc)fractionalpart{\left( {44 + \sqrt {2017} } \right)^{2017}} = n + m.abc = \underbrace {\left( {n + m} \right)}_{\operatorname{int} egerpart} + \underbrace {\left( {0.abc} \right)}_{fractionalpart}
Since fractional part of (442017)2017{\left( {44 - \sqrt {2017} } \right)^{2017}}and (44+2017)2017{\left( {44 + \sqrt {2017} } \right)^{2017}}are (1 – 0.abc) and (0.abc)
Therefore, the sum of F1+F2=(10.abc)+(0.abc)=1{F_1} + {F_2} = \left( {1 - 0.abc} \right) + \left( {0.abc} \right) = 1
Thus F1+F2=1{F_1} + {F_2} = 1
Therefore, F1+F2{F_1} + {F_2} 1 lies between 0.9 & 1.35

So, the correct answer is “Option C”.

Note:
In such types of questions it is advisable to remember some binomial expansions to identify what is an integral part and fractional part, so it saves a lot of time. In the beginning it will be difficult to learn every expansion but with time and practice everything gets easier.