Solveeit Logo

Question

Question: The fraction of atoms of radioactive element that decays in 6 days is 7/8. The fraction that decays ...

The fraction of atoms of radioactive element that decays in 6 days is 7/8. The fraction that decays in 10 days will be

A

77/80

B

71/80

C

31/32

D

15/16

Answer

31/32

Explanation

Solution

By using N=N0(12)t/T1/2N = N_{0}\left( \frac{1}{2} \right)^{t/T_{1/2}}t=T1/2loge(N0N)loge(2)t = \frac{T_{1/2}\log_{e}\left( \frac{N_{0}}{N} \right)}{\log_{e}(2)}

tlogeN0Nt \propto \log_{e}\frac{N_{0}}{N}t1t2=(logeN0N)1(logeN0N)2\frac{t_{1}}{t_{2}} = \frac{\left( \log_{e}\frac{N_{0}}{N} \right)_{1}}{\left( \log_{e}\frac{N_{0}}{N} \right)_{2}}

Hence 610=loge(8/1)loge(N0/N)\frac{6}{10} = \frac{\log_{e}(8/1)}{\log_{e}(N_{0}/N)}

logeN0N=106loge(8)=loge32\log_{e}\frac{N_{0}}{N} = \frac{10}{6}\log_{e}(8) = \log_{e}32N0N=32\frac{N_{0}}{N} = 32.

So fraction that decays =1132=3132= 1 - \frac{1}{32} = \frac{31}{32}.