Solveeit Logo

Question

Question: The fourth question presented is: \(\frac{\sin \frac{\pi }{14}}{\sin \frac{3\pi }{14}}\frac{\sin \fr...

The fourth question presented is: sinπ14sin3π14sin5π14sin7π14sin9π14sin11π14sin13π14sin14π14\frac{\sin \frac{\pi }{14}}{\sin \frac{3\pi }{14}}\frac{\sin \frac{5\pi }{14}}{\sin \frac{7\pi }{14}}\frac{\sin \frac{9\pi }{14}}{\sin \frac{11\pi }{14}}\frac{\sin \frac{13\pi }{14}}{\sin \frac{14\pi }{14}}

Answer

Undefined

Explanation

Solution

The given expression is: E=sinπ14sin3π14sin5π14sin7π14sin9π14sin11π14sin13π14sin14π14E = \frac{\sin \frac{\pi }{14}}{\sin \frac{3\pi }{14}}\frac{\sin \frac{5\pi }{14}}{\sin \frac{7\pi }{14}}\frac{\sin \frac{9\pi }{14}}{\sin \frac{11\pi }{14}}\frac{\sin \frac{13\pi }{14}}{\sin \frac{14\pi }{14}}

Let's analyze the terms in the expression. We know that sin(πx)=sinx\sin(\pi - x) = \sin x. Using this identity:

sin13π14=sin(ππ14)=sinπ14\sin \frac{13\pi}{14} = \sin \left(\pi - \frac{\pi}{14}\right) = \sin \frac{\pi}{14}

sin11π14=sin(π3π14)=sin3π14\sin \frac{11\pi}{14} = \sin \left(\pi - \frac{3\pi}{14}\right) = \sin \frac{3\pi}{14}

sin9π14=sin(π5π14)=sin5π14\sin \frac{9\pi}{14} = \sin \left(\pi - \frac{5\pi}{14}\right) = \sin \frac{5\pi}{14}

Also, sin7π14=sinπ2=1\sin \frac{7\pi}{14} = \sin \frac{\pi}{2} = 1. And sin14π14=sinπ=0\sin \frac{14\pi}{14} = \sin \pi = 0.

Substitute these values into the expression: E=sinπ14sin3π14sin5π141sin5π14sin3π14sinπ140E = \frac{\sin \frac{\pi }{14}}{\sin \frac{3\pi }{14}}\frac{\sin \frac{5\pi }{14}}{1}\frac{\sin \frac{5\pi }{14}}{\sin \frac{3\pi }{14}}\frac{\sin \frac{\pi }{14}}{0}

Since the last term has sinπ=0\sin \pi = 0 in the denominator, the entire expression is undefined.

In mathematics, division by zero is undefined. Therefore, the value of the given expression is undefined.