Solveeit Logo

Question

Mathematical Physics Question on Fourier Transform

The Fourier transform and its inverse transform are respectively defined as:f~(ω)=12π+f(x)eiωxdx\tilde{f}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x) e^{i \omega x} dxandf(x)=12π+f~(ω)eiωxdωf(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \tilde{f}(\omega) e^{-i \omega x} d\omegaConsider two functions ff and gg. Another function fgf * g is defined as:(fg)(x)=12π+f(y)g(xy)dy(f * g)(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(y) g(x - y) dyWhich of the following relation is/are true?Note: Tilde (~) denotes the Fourier transform.

A

fg=gff * g = g * f

B

f~g=gf~\tilde{f} * g = g * \tilde{f}

C

f~g=f~g\tilde{f} * g = \tilde{f} g

D

f~g=f~g~\tilde{f} * g = \tilde{f} \tilde{g}

Answer

fg=gff * g = g * f

Explanation

Solution

The correct Answers are(A): fg=gff * g = g * f,(B): f~g=gf~\tilde{f} * g = g * \tilde{f},(D):f~g=f~g~\tilde{f} * g = \tilde{f} \tilde{g}