Solveeit Logo

Question

Mathematics Question on Properties of Inverse Trigonometric Functions

The formula 2sin1x=sin1(2x1x2)2\,\sin^{-1}x=\sin^{-1}(2x\sqrt{1-x^2}) holds for

A

x[0,1]x\,\in\,[0,1]

B

x[12,12]x\,\in\,\left[-\frac{1}{\sqrt2},\frac{1}{\sqrt2}\right]

C

x(1,0)x\,\in\,(-1,0)

D

x[32,32]x\,\in\,\left[-\frac{\sqrt3}{2},\frac{\sqrt3}{2}\right]

Answer

x[12,12]x\,\in\,\left[-\frac{1}{\sqrt2},\frac{1}{\sqrt2}\right]

Explanation

Solution

Let x=sinθx= sin\,\theta Then sin1(2x1x2)=sin1(sin2θ)sin^{-1}\left(2x\sqrt{1-x^{2}} \right) = sin^{-1} \left(sin \,2\theta\right) =2θ=2sin1x = 2\theta = 2\,sin^{-1} x if π22θπ2-\frac{\pi}{2} \le 2\theta \le \frac{\pi}{2} i.e., if π4θπ4-\frac{\pi}{4} \le \theta \le \frac{\pi}{4} i.e., if sin(π4)sinθsinπ4sin\left(-\frac{\pi}{4}\right)\le sin \,\theta\le sin \frac{\pi}{4} i.e., if 12x12-\frac{1}{\sqrt{2}} \le x \le \frac{1}{\sqrt{2}} x[12,12]\therefore x \in \left[-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right]