Solveeit Logo

Question

Question: The force/acting after time t on the bottom of a beaker of area A when water of density ρfalls from ...

The force/acting after time t on the bottom of a beaker of area A when water of density ρfalls from a tap at a height h at uniform rate v m3 s-1 is

A

v[gt+2g( hvtA)]\mathrm { v } \left[ g t + 2 g \left( \mathrm {~h} - \frac { \mathrm { vt } } { \mathrm { A } } \right) \right]

B

vρ[gt+2gh]v \rho [ g t + \sqrt { 2 g h } ]

C

vρgh

D

vg[gt+2g(h+vtA)]\mathrm { vg } \left[ g t + \sqrt { 2 g \left( h + \frac { v t } { A } \right) } \right]

Answer

v[gt+2g( hvtA)]\mathrm { v } \left[ g t + 2 g \left( \mathrm {~h} - \frac { \mathrm { vt } } { \mathrm { A } } \right) \right]

Explanation

Solution

Height through which water falls in time dt after t second is (h – h'), where h' is the height of water already collected.

Mass of water collected = vρdt

and velocity of water = 2g( hh)\sqrt { 2 g \left( \mathrm {~h} - \mathrm { h } ^ { \prime } \right) }

Total force = weight of water already collected + impact force

= vtρg + vρ2g (h – h')

= vρ [gt+2g(hvt A)]\left[ g t + 2 g \left( h - \frac { v t } { \mathrm {~A} } \right) \right]