Solveeit Logo

Question

Question: The force required just to move a body up an inclined plane is double the force required just to pre...

The force required just to move a body up an inclined plane is double the force required just to prevent the body sliding down. If the coefficient of friction is 0.25, the angle of inclination of the plane is

A

36.8°

B

45°

C

30°

D

42.6°

Answer

36.8°

Explanation

Solution

Retardation in upward motion

\thereforeForce required just to move up Fup=mg(sinθ+μcosθ)F _ { u p } = m g ( \sin \theta + \mu \cos \theta )

Similarly for down ward motion a =g(sinθμcosθ)= g ( \sin \theta - \mu \cos \theta )

\therefore Force required just to prevent the body sliding down

Fdn=mg(sinθμcosθ)F _ { d n } = m g ( \sin \theta - \mu \cos \theta )

According to problem Fup=2FdnF _ { u p } = 2 F _ { d n }

mg(sinθ+μcosθ)=2mg(sinθμcosθ)m g ( \sin \theta + \mu \cos \theta ) = 2 m g ( \sin \theta - \mu \cos \theta )

sinθ+μcosθ=2sinθ2μcosθ\sin \theta + \mu \cos \theta = 2 \sin \theta - 2 \mu \cos \theta

3μcosθ=sinθ3 \mu \cos \theta = \sin \thetatanθ=3μ\tan \theta = 3 \mu

θ=tan1(3μ)=tan1(3×0.25)=tan1(0.75)\theta = \tan ^ { - 1 } ( 3 \mu ) = \tan ^ { - 1 } ( 3 \times 0.25 ) = \tan ^ { - 1 } ( 0.75 ) =36.8= 36.8 ^ { \circ }