Solveeit Logo

Question

Physics Question on Kinetic Energy

The force constant of weightless spring is 16N/m16\, N / m. A body of mass 1.0kg1.0 \,kg suspended from it is pulled down through 5cm5\, cm and then released. The maximum kinetic energy of the system (spring ++ body) will be

A

2×102J2 \times 10^{-2}\, J

B

4×102J4 \times 10^{-2}\, J

C

8×102J8 \times 10^{-2} \,J

D

16×102J16 \times 10^{-2} \,J

Answer

2×102J2 \times 10^{-2}\, J

Explanation

Solution

Given, k=16N/m,m=1kgk=16\, N / m, m=1\,k g amplitude a=5cm=5×102ma=5 \,cm =5 \times 10^{-2} \,m. Kinetic energy of a body executing SHM. =12mω2(a2y2)=\frac{1}{2} m \omega^{2}\left(a^{2}-y^{2}\right) When displacement y=0y=0, then KEKE is maximum. \therefore Maximum KE=12mω2a2K E=\frac{1}{2} m \omega^{2} a^{2} =12m(2πT)2a2=\frac{1}{2} m\left(\frac{2 \pi}{T}\right)^{2} a^{2} =12m(km)2a2=\frac{1}{2} m\left(\sqrt{\frac{k}{m}}\right)^{2} a^{2} =12m×km×a2=12ka2=\frac{1}{2} m \times \frac{k}{m} \times a^{2}=\frac{1}{2} k a^{2} =12×16kt(5×102)2=\frac{1}{2} \times 16 k t\left(5 \times 10^{-2}\right)^{2} =200×104=2×102J=200 \times 10^{-4}=2 \times 10^{-2}\, J