Solveeit Logo

Question

Mathematics Question on Vectors

The foot of the perpendicular from a point on the circle x2+y2=1,z=0x ^2+ y ^2=1, z =0 to the plane 2x+3y+z=62 x+3 y+z=6 lies on which one of the following curves ?

A

(6x+5y12)2+4(3x+7y8)2=1(6 x+5 y-12)^2+4(3 x+7 y-8)^2=1, z=62x3yz=6-2 x-3 y

B

(5x+6y12)2+4(3x+5y9)2=1(5 x+6 y-12)^2+4(3 x+5 y-9)^2=1, z=62x3yz=6-2 x-3 y

C

(6x+5y14)2+9(3x+5y7)2=1(6 x+5 y-14)^2+9(3 x+5 y-7)^2=1, z=62x3yz=6-2 x-3 y

D

(5x+6y14)2+9(3x+7y8)2=1(5 x+6 y-14)^2+9(3 x+7 y-8)^2=1, z=62x3yz=6-2 x-3 y

Answer

(5x+6y12)2+4(3x+5y9)2=1(5 x+6 y-12)^2+4(3 x+5 y-9)^2=1, z=62x3yz=6-2 x-3 y

Explanation

Solution

The correct option is (B): (5x+6y12)2+4(3x+5y9)2=1(5 x+6 y-12)^2+4(3 x+5 y-9)^2=1, z=62x3yz=6-2 x-3 y