Solveeit Logo

Question

Mathematics Question on Three Dimensional Geometry

The foot of the perpendicular drawn from the origin to a plane is (1,1,5)(1,-1,5) . The equation of the plane is

A

r.(i^j^+5k^)=27\vec{r}.(\hat{i}-\hat{j}+5\hat{k})=27

B

r.(i^j^+5k^)=27\vec{r}.(\hat{i}-\hat{j}+5\hat{k})=\sqrt{27}

C

r.(5i^j^+k^)=127\vec{r}.(5\hat{i}-\hat{j}+\hat{k})=\frac{1}{\sqrt{27}}

D

xy5z27=0x-y-5z-27=0

Answer

r.(i^j^+5k^)=27\vec{r}.(\hat{i}-\hat{j}+5\hat{k})=27

Explanation

Solution

Here, n=i^j^+5k^\vec{n}=\hat{i}-\hat{j}+5\hat{k} n^=nn=i^j^+5k^(1)2+(1)2+(5)2\hat{n}=\frac{{\vec{n}}}{|\vec{n}|}=\frac{\hat{i}-\hat{j}+5\hat{k}}{\sqrt{{{(1)}^{2}}+{{(-1)}^{2}}+{{(5)}^{2}}}}
i^j^+5k^27\frac{\hat{i}-\hat{j}+5\hat{k}}{\sqrt{27}}

Also, length of perpendicular from origin to the plane is

d=(1)2+(1)2+(5)2=27d=\sqrt{{{(1)}^{2}}+{{(-1)}^{2}}+{{(5)}^{2}}}=\sqrt{27}

Now, equation of plane r.n^=d\vec{r}.\hat{n}=d

r.(i^j^+5k^)27=27\vec{r}.\,\frac{(\hat{i}-\hat{j}+5\hat{k})}{\sqrt{27}}=\sqrt{27}

\Rightarrow r.(i^j^+5k^)=27\vec{r}.\,(\hat{i}-\hat{j}+5\hat{k})=27