Solveeit Logo

Question

Question: The following table gives the literacy rate (in percentage) of \(35\) cities. Find the mean literacy...

The following table gives the literacy rate (in percentage) of 3535 cities. Find the mean literacy rate.

Literacy rate (in %)455545 - 55556555 - 65657565 - 75758575 - 85859585 - 95
Number of cities33101011118833
Explanation

Solution

Here we will discuss the concept of the mean; we create a table by adding the columns to the given data, first we have to find the class mark by using the relation. Then we make the table for our clearance and use the mean formula. Finally we get the mean literacy rate.

Formula used: (xi)=Upperclasslimit+Lowerclasslimit2({x_i}) = \dfrac{{Upperclass\lim it + Lowerclass\lim it}}{2}
X=a+i=1nfiuii=1nfi×h\overline X = a + \dfrac{{\sum\limits_{i = 1}^n {{f_i}{u_i}} }}{{\sum\limits_{i = 1}^n {{f_i}} }} \times h

Complete step-by-step solution:
To find the class mark (xi)({x_i}) for each interval, using the following relation:
(xi)=Upperclasslimit+Lowerclasslimit2({x_i}) = \dfrac{{Upperclass\lim it + Lowerclass\lim it}}{2}
Hence we get the values for x1=45+552=1002{x_1} = \dfrac{{45 + 55}}{2} = \dfrac{{100}}{2}
=50= 50
Similarly, we can do the rest of the given interval. So we will get the column of xi{x_i}
Also, taking 7070 as assumed mean (a)(a) (because it is the mid value of the given interval)
Now we have to calculating di,ui,fiui.{d_i},{u_i},{f_i}{u_i}.
So, we need to make table, and we can write it as:

Literacy rate (%)Number of cities (fi)({f_i})xi{x_i}di=xi70{d_i} = {x_i} - 70ui=di10{u_i} = \dfrac{{{d_i}}}{{10}}fiui{f_i}{u_i}
455545 - 5533505020 - 202 - 26 - 6
556555 - 651010606010 - 101 - 110 - 10
657565 - 7511117070000000
758575 - 8588808010101188
859585 - 9533909020202266
Total3535

From the table, we can find the sum of the all fis{f_i}'s
i=1nfi=35\Rightarrow \sum\limits_{i = 1}^n {{f_i} = 35}
Now we added all the fiuis{f_i}{u_i}'s
i=1nfiui=610+0+8+6=2\Rightarrow \sum\limits_{i = 1}^n {{f_i}{u_i} = - 6 - 10 + 0 + 8 + 6 = - 2}
Also, the class size (h)(h)for this data =10 = 10(because in the class interval 5545=10,6555=10)55 - 45 = 10,65 - 55 = 10)
By applying mean formula
X=a+(i=1nfiuii=1nfi)×h\overline X = a + \left( {\dfrac{{\sum\limits_{i = 1}^n {{f_i}{u_i}} }}{{\sum\limits_{i = 1}^n {{f_i}} }}} \right) \times h
Now we just substituted all the values in the formula above
=70+(235)×10= 70 + \left( {\dfrac{{ - 2}}{{35}}} \right) \times 10
First we multiply the terms,
=702035= 70 - \dfrac{{20}}{{35}}
By cancelling the fraction terms by55,
=7047= 70 - \dfrac{4}{7}
Now dividing the fraction term to reduce the term
=700.57= 70 - 0.57
Now subtraction is needed and we done, we get
=69.43= 69.43

Therefore the mean literacy rate is 69.43%69.43\%

Note: In this question we have an alternative method,
Here we have to use the formula, Mean,X=i=1nfixii=1nfi\overline X = \dfrac{{\sum\limits_{i = 1}^n {{f_i}{x_i}} }}{{\sum\limits_{i = 1}^n {{f_i}} }}
Now students might use the formula, where product of fi{f_i} and xi{x_i} for each class will be as:

ClassFrequency (fi)({f_i})xi{x_i}fixi{f_i}{x_i}
455545 - 55335050150150
556555 - 6510106060600600
657565 - 7511117070770770
758575 - 85888080640640
859585 - 95339090270270
Total353524302430

Now put the values in the above mean formula and get,
X=243035\overline X = \dfrac{{2430}}{{35}}
On dividing the term and we get,
69.428\Rightarrow 69.428
We can round of the last digit hence we get,
69.43%\Rightarrow 69.43\%
Therefore we get the mean literacy rate.
Thus we get the same answer in both the methods.