Solveeit Logo

Question

Mathematics Question on Median of Grouped Data

The following table gives the distribution of the life time of 400 neon lamps :

Life time (in hours)Number of lamps
1500 - 200014
2000 - 250056
2500 - 300060
3000 - 350086
3500 - 400074
4000 - 450062
4500 - 500048

Find the median life time of a lamp.

Answer

The cumulative frequencies with their respective class intervals are as follows.

Life time (in hours)Number of lamps(fi\bf{f_i})Cumulative frequency
1500 - 20001414
2000 - 25005614 + 56 = 70
2500 - 30006070 + 60 = 130
3000 - 350086130 + 86 = 216
3500 - 400074216 + 74 = 290
4000 - 450062290 + 62 = 352
4500 - 500048352 + 48 = 400
Total(n)400

Cumulative frequency just greater n2(i.e.,4002=200)\frac{n}2 ( i.e., \frac{400}2 = 200) than is 216, belonging to class interval 3000 - 3500.
Median class = 3000 - 3500
Lower limit (ll) of median class = 3000
Frequency (ff) of median class = 86
Cumulative frequency (cfcf) of median class = 130
Class size (hh) = 5

Median = l+(n2cff×h)l + (\frac{\frac{n}2 - cf}f \times h)

Median = 3000+(200\-13086)×500)3000 + (\frac{200 \- 130}{86} )\times 500)

Median = 3000 +70×50086\frac{ 70 \times 500 }{86}
Median = 3000 + 406.967
Median = 3406.967

Therefore, median life time of lamps is 3406.98 hours.