Solveeit Logo

Question

Question: The Following standard free energy change for the reaction \[{H_2}(g) + 2AgCl(s) \to 1Ag(s) + 2{H^...

The Following standard free energy change for the reaction
H2(g)+2AgCl(s)1Ag(s)+2H+(aq.)+2Cl(aq.){H_2}(g) + 2AgCl(s) \to 1Ag(s) + 2{H^ + }(aq.) + 2C{l^ - }(aq.)
is10.26kcalmol1 - 10.26kcalmo{l^{ - 1}} at 25C{25^ \circ }C. A cell using the above reaction is operated at 25C{25^ \circ }C under
PH2=1atm.[H+]{P_{H2}} = 1atm.[{H^ + }]and[Cl]]=0.1[C{l^{ - ]}}] = 0.1. Calculate the emf of the cell.
A. 0.140volt0.140volt
b. 0.240volt0.240volt
C. 0.340volt0.340volt
D. 0.440volt0.440volt

Explanation

Solution

Hint : In order to solve this question we must know about the concept of Gibbs free energy. It’s said the max. amount of work(wmax=ΔG0)({w_{\max }} = \Delta {G^0})is equal to the product of cell potential (E0{E^0}) and the total amount of transferred charge during the reaction (nF)\left( {nF} \right)ΔG=nFE\Delta {G^ \circ } = - nF{E^ \circ }.

Complete step-by-step solution:
From this question, here we get,
ΔG0=10.26Kcalmol1\Delta {G^0} = - 10.26Kcalmo{l^{ - 1}}
And From the equation of Gibbs free energy, we also know, ΔG0=nFE0\Delta {G^0} = - nF{E^0}
Now we can write,

E0=10.26×103×4.1592×96500 E0=0.22109  {E^0} = - \frac{{10.26 \times {{10}^3} \times 4.159}}{{ - 2 \times 96500}} \\\ \Rightarrow {E^0} = 0.22109 \\\

Therefore, applying the Nernst equation we get,

E=E00.0592nlog(H+)2(Cl)2PH2 E=0.22109+0.1182 E=0.339 E0.34volt  E = {E^0} - \frac{{0.0592}}{n}\log \frac{{{{({H^ + })}^2} * {{(C{l^ - })}^2}}}{{{P_{H2}}}} \\\ \Rightarrow E = 0.22109 + 0.1182 \\\ \Rightarrow E = 0.339 \\\ \therefore E \simeq 0.34volt \\\

So, option c) 0.340volt0.340volt is correct.

Note: Unconstrained redox reaction has a(ve)ΔG0\left( { - ve} \right)\Delta {G^0}and become a(+ve)Ecell\left( { + ve} \right){E_{cel}}_l. Huge equilibrium constants relate to the enormous (+ve)\left( { + ve} \right)value ofE0{E^0}.