Solveeit Logo

Question

Chemistry Question on Atomic Models

The following results are observed when sodium metal is irradiated with different wavelengths. Calculate (a) threshold wavelength and, (b) Planck’s constant

λ (nm)500450400
v × 10 –5(cm s–1)2.554.355.35
Answer

(a) Assuming the threshold wavelength to be λ0 nm (= λ0 × 10-9 m) , the kinetic energy of the radiation is given as: h (v - v0) = 12\frac{1}{2}mv2
Three different equalities can be formed by the given value as:
hc (1λ1λ0\frac{1}{\lambda}-\frac{1}{\lambda_0}) =12\frac{1}{2}mv2
hc (1500×1091λ0×109m\frac{1}{500\times10^{9}}-\frac{1}{\lambda_0\times10^{-9}m}) = 12\frac{1}{2}m (2.55 × 10+5 × 10-2 ms-1)
hc109m[15001λ0]=12m\frac{hc}{10^{-9}}m[\frac{1}{500}-\frac{1}{\lambda_0}]=\frac{1}{2}m(2.55 × 10+3 ms-1)2 …....(1)
Similarly,hc109m\frac{hc}{10^{-9}m} [14501λ0\frac{1}{450}-\frac{1}{\lambda_0}] = 12m\frac{1}{2}m (3.45 × 10+3 ms-1)2 …...(2)
hc109m\frac{hc}{10^{-9}m}[14001λ0\frac{1}{400}-\frac{1}{\lambda_0}] = 12\frac{1}{2} m (5.35×10+3 ms-1)2 …....(3)
Dividing equation (3) by equation (1):
[λ0400400λ0][λ0500500λ0]=(5.35×10+3ms1)2(2.55×10+3ms1)2\frac{[\frac{\lambda_0-400}{400\lambda_0}]}{[\frac{\lambda_0-500}{500\lambda_0}]}=\frac{(5.35\times10^{+3}ms^{-1})^2}{(2.55\times10^{+3}ms^{-1})^2}
5λ020004λ02000=(5.352.55)2=28.62256.5025\frac{5\lambda_0-2000}{4\lambda_0-2000}=(\frac{5.35}{2.55})^2=\frac{28.6225}{6.5025}
5λ020004λ02000=4.40177\frac{5\lambda_0-2000}{4\lambda_0-2000}=4.40177
17.6070 λ0 - 5 λ0 = 8803.537 - 2000
λ0 = 680.53712.607\frac{ 680.537}{12.607}
λ0 = 539.8 nm
λ0 ≈ 540 nm
∴ Threshold wavelength (λ0) = 540 nm