Solveeit Logo

Question

Question: The following questions consist of two statements, one labelled as ‘Assertion (A)’ and the other lab...

The following questions consist of two statements, one labelled as ‘Assertion (A)’ and the other labelled as ‘Reason (R)’. You are to examine these two statements carefully and decide if the Assertion (A) and Reason (R) are individually true and if so, whether the Reason (R) is the correct explanation for the given Assertion (A). Select your answer to these items using the codes given below and then select the correct option.
Codes:
(a) Both A and R are individually true and R is the correct explanation of A
(b) Both A and R are individually true but R is not the correct explanation of A
(c) A is true but R is false
(d) A is false but R is true
Assertion (A): ddx(xxx)=xxx.x(1+2lnx)\dfrac{d}{dx}\left( {{x}^{{{x}^{x}}}} \right)={{x}^{{{x}^{x}}}}.x\left( 1+2\ln x \right)
Reason (R): (xx)x=xx2=ex2lnx\because {{\left( {{x}^{x}} \right)}^{x}}={{x}^{{{x}^{2}}}}={{e}^{{{x}^{2}}\ln x}}

Explanation

Solution

The given problem is related to derivative of a function and expressing a function in exponential form. Use the formula ddx(xx)=xx(1+ln(x))\dfrac{d}{dx}\left( {{x}^{x}} \right)={{x}^{x}}\left( 1+\ln (x) \right) to evaluate the derivative given in the assertion.

Complete step by step answer:
Given assertion is: ddx(xxx)=xxx.x(1+2lnx)\dfrac{d}{dx}\left( {{x}^{{{x}^{x}}}} \right)={{x}^{{{x}^{x}}}}.x\left( 1+2\ln x \right)
Now, let y=xxxy={{x}^{{{x}^{x}}}} .
Using natural log on both sides, we get lny=ln(xxx)\ln y=\ln \left( {{x}^{{{x}^{x}}}} \right)
lny=xxlnx\Rightarrow \ln y={{x}^{x}}\ln x
Now, let’s differentiate both sides with respect to xx .
On differentiating both sides with respect to xx , we get
ddx(lny)=ddx(xxln(x))\dfrac{d}{dx}\left( \ln y \right)=\dfrac{d}{dx}\left( {{x}^{x}}\ln \left( x \right) \right)
1ydydx=ddx(xxln(x))\Rightarrow \dfrac{1}{y}\dfrac{dy}{dx}=\dfrac{d}{dx}\left( {{x}^{x}}\ln (x) \right) --- equation(1)(1)
Now, we can see xxln(x){{x}^{x}}\ln (x) is of the form f(x).g(x)f(x).g(x) where f(x)=xxf(x)={{x}^{x}} and g(x)=ln(x)g(x)=\ln (x) .
ddx(f(x).g(x))=f(x).g(x)+g(x).f(x)\Rightarrow \dfrac{d}{dx}\left( f(x).g(x) \right)=f(x).{{g}^{'}}(x)+g(x).{{f}^{'}}(x)
Now, we need to find f(x){{f}^{'}}(x) and g(x){{g}^{'}}(x) .
f(x)=ddx.f(x)=ddx(xx)=xx(1+lnx){{f}^{'}}(x)=\dfrac{d}{dx}.f(x)=\dfrac{d}{dx}\left( {{x}^{x}} \right)={{x}^{x}}\left( 1+\ln x \right)
g(x)=ddx.g(x)=ddx(lnx)=1x{{g}^{'}}(x)=\dfrac{d}{dx}.g(x)=\dfrac{d}{dx}\left( \ln x \right)=\dfrac{1}{x}
ddx(xx.ln(x))=xx(lnx+1).lnx\Rightarrow \dfrac{d}{dx}\left( {{x}^{x}}.\ln (x) \right)={{x}^{x}}\left( \ln x+1 \right).\ln x
On substituting the value of ddx(xx.ln(x))\dfrac{d}{dx}\left( {{x}^{x}}.\ln (x) \right) in equation (1)(1) , we get
1ydydx=xx.1x+xx(lnx+1).lnx\dfrac{1}{y}\dfrac{dy}{dx}={{x}^{x}}.\dfrac{1}{x}+{{x}^{x}}\left( \ln x+1 \right).\ln x
dydx=y[xx.1x+xx(lnx+1).lnx]\Rightarrow \dfrac{dy}{dx}=y\left[ {{x}^{x}}.\dfrac{1}{x}+{{x}^{x}}\left( \ln x+1 \right).\ln x \right]
Now, we know y=xxxy={{x}^{{{x}^{x}}}} .
dydx=xxx[xx.1x+xx(lnx+1).lnx]\Rightarrow \dfrac{dy}{dx}={{x}^{{{x}^{x}}}}\left[ {{x}^{x}}.\dfrac{1}{x}+{{x}^{x}}\left( \ln x+1 \right).\ln x \right]
dydx=xxx[xx1+xx(lnx+1).lnx]\Rightarrow \dfrac{dy}{dx}={{x}^{{{x}^{x}}}}\left[ {{x}^{x-1}}+{{x}^{x}}\left( \ln x+1 \right).\ln x \right]
Clearly, the assertion is wrong.
Now, taking the reason, (xx)x=xx2=ex2lnx{{\left( {{x}^{x}} \right)}^{x}}={{x}^{{{x}^{2}}}}={{e}^{{{x}^{2}}\ln x}} .
From the rule of exponents, (am)n=amn{{\left( {{a}^{m}} \right)}^{n}}={{a}^{mn}} , we get (xx)x=ax×x=xx2{{\left( {{x}^{x}} \right)}^{x}}={{a}^{x\times x}}={{x}^{{{x}^{2}}}} .
Also, we know am=emlna{{a}^{m}}={{e}^{m\ln a}} .
xx2=ex2lnx\Rightarrow {{x}^{{{x}^{2}}}}={{e}^{{{x}^{2}}\ln x}}
Hence, the reason is true.

So, the correct answer is “Option D”.

Note: The formula ddx(xx)=xx(1+ln(x))\dfrac{d}{dx}\left( {{x}^{x}} \right)={{x}^{x}}\left( 1+\ln (x) \right) is uncommon and hence many students forget it. But it should be remembered as it helps in solving such questions.