Solveeit Logo

Question

Question: The following is a p.d.f. (Probability density function) of a continuous random variable \[X\]: \[...

The following is a p.d.f. (Probability density function) of a continuous random variable XX:
f(x)=x320<x<8;=0f\left( x \right) = \dfrac{x}{{32}}{\rm{ }}0 < x < 8; = 0 otherwise
Find the value of the c.d.f. at x=0.5x = 0.5 and x=9x = 9.

Explanation

Solution

Here, we will use to find the formula of c.d.f. of a probability density function with the limits 0 and 0.50.5 to find the value of the c.d.f. at x=0.5x = 0.5. Then, we will use to find the formula of c.d.f. of a probability density function with the limits 0 and 9. We will then use the property of definite integrals to split the integral into a sum of two integrals (with limits 0 to 8, and 8 to 9 respectively). Finally, we will integrate the expressions to find the value of the c.d.f. at x=9x = 9.
Formula Used: We will use the following formulas:
1.The c.d.f. of a p.d.f. f(x)f\left( x \right) is given as F(x)=xf(x)dxF\left( x \right) = \int\limits_{ - \infty }^x {f\left( x \right)} dx.
2.The integral of a function of the form af(x)af\left( x \right) can be written as af(x)dx=af(x)dx\int {af\left( x \right)} dx = a\int {f\left( x \right)} dx.
3.The integral of a function of the form xn{x^n} can be written as xndx=xn+1n+1+C\int {{x^n}} dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + C.
4.The definite integral abf(x)dx\int\limits_a^b {f\left( x \right)} dx can be written as the sum of the definite integrals acf(x)dx\int\limits_a^c {f\left( x \right)} dx and cbf(x)dx\int\limits_c^b {f\left( x \right)} dx, where a<c<ba < c < b.

Complete step-by-step answer:
We need to find the value of the cumulative density function at x=0.5x = 0.5.
The value x=0.5x = 0.5 lies between 0 and 8.
Thus, the lower limit becomes 0 and the upper limit becomes 0.50.5.
Therefore, substituting x=0.5x = 0.5 and f(x)=x32f\left( x \right) = \dfrac{x}{{32}} in the c.d.f. F(x)=xf(x)dxF\left( x \right) = \int\limits_{ - \infty }^x {f\left( x \right)} dx, we get
F(0.5)=00.5x32dx\Rightarrow F\left( {0.5} \right) = \int\limits_0^{0.5} {\dfrac{x}{{32}}} dx
Now, we will integrate the expression.
The integral of a function of the form af(x)af\left( x \right) can be written as af(x)dx=af(x)dx\int {af\left( x \right)} dx = a\int {f\left( x \right)} dx.
Therefore, we get
F(0.5)=13200.5xdx\Rightarrow F\left( {0.5} \right) = \dfrac{1}{{32}}\int\limits_0^{0.5} x dx
Rewriting the expression, we get
F(0.5)=13200.5x1dx\Rightarrow F\left( {0.5} \right) = \dfrac{1}{{32}}\int\limits_0^{0.5} {{x^1}} dx
The integral of a function of the form xn{x^n} can be written as xndx=xn+1n+1+C\int {{x^n}} dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + C.
Therefore, we get
F(0.5)=132(x1+11+1)00.5\Rightarrow F\left( {0.5} \right) = \dfrac{1}{{32}}\left. {\left( {\dfrac{{{x^{1 + 1}}}}{{1 + 1}}} \right)} \right|_0^{0.5}
Simplifying the expression, we get
F(0.5)=132(x22)00.5\Rightarrow F\left( {0.5} \right) = \dfrac{1}{{32}}\left. {\left( {\dfrac{{{x^2}}}{2}} \right)} \right|_0^{0.5}
Substituting the limits into the expression, we get
F(0.5)=132[(0.5)22022]\Rightarrow F\left( {0.5} \right) = \dfrac{1}{{32}}\left[ {\dfrac{{{{\left( {0.5} \right)}^2}}}{2} - \dfrac{{{0^2}}}{2}} \right]
Simplifying the expression, we get
F(0.5)=132[0.25202] F(0.5)=132[1420] F(0.5)=132[18]\begin{array}{l} \Rightarrow F\left( {0.5} \right) = \dfrac{1}{{32}}\left[ {\dfrac{{0.25}}{2} - \dfrac{0}{2}} \right]\\\ \Rightarrow F\left( {0.5} \right) = \dfrac{1}{{32}}\left[ {\dfrac{{\dfrac{1}{4}}}{2} - 0} \right]\\\ \Rightarrow F\left( {0.5} \right) = \dfrac{1}{{32}}\left[ {\dfrac{1}{8}} \right]\end{array}
Multiplying the terms of the expression, we get
F(0.5)=1256\Rightarrow F\left( {0.5} \right) = \dfrac{1}{{256}}
Therefore, we get the value of the c.d.f. at x=0.5x = 0.5 as 1256\dfrac{1}{{256}}.
Now, we need to find the value of the cumulative density function at x=9x = 9.
Substituting x=9x = 9 in the c.d.f. F(x)=xf(x)dxF\left( x \right) = \int\limits_{ - \infty }^x {f\left( x \right)} dx, we get
F(9)=09f(x)dx\Rightarrow F\left( 9 \right) = \int\limits_0^9 {f\left( x \right)} dx
We can observe that 9 does not lie between 0 and 8.
We will split the limits using the property of definite integrals.
The definite integral abf(x)dx\int\limits_a^b {f\left( x \right)} dx can be written as the sum of the definite integrals acf(x)dx\int\limits_a^c {f\left( x \right)} dx and cbf(x)dx\int\limits_c^b {f\left( x \right)} dx, where a<c<ba < c < b.
Therefore, we can rewrite the equation as
F(9)=08f(x)dx+89f(x)dx\Rightarrow F\left( 9 \right) = \int\limits_0^8 {f\left( x \right)} dx + \int\limits_8^9 {f\left( x \right)} dx
The function in the first integral lies between 0 and 8. Therefore, f(x)=x32f\left( x \right) = \dfrac{x}{{32}}.
The function in the second integral does not lie between 0 and 8. Therefore, f(x)=0f\left( x \right) = 0.
Therefore, the equation becomes
F(9)=08x32dx+89(0)dx\Rightarrow F\left( 9 \right) = \int\limits_0^8 {\dfrac{x}{{32}}} dx + \int\limits_8^9 {\left( 0 \right)} dx
Rewriting the equation, we get
F(9)=08x32dx+89(0x)dx\Rightarrow F\left( 9 \right) = \int\limits_0^8 {\dfrac{x}{{32}}} dx + \int\limits_8^9 {\left( {0x} \right)} dx
The integral of a function of the form af(x)af\left( x \right) can be written as af(x)dx=af(x)dx\int {af\left( x \right)} dx = a\int {f\left( x \right)} dx.
Therefore, we get
F(9)=13208xdx+0×89xdx F(9)=13208xdx+0 F(9)=13208xdx\begin{array}{l} \Rightarrow F\left( 9 \right) = \dfrac{1}{{32}}\int\limits_0^8 x dx + 0 \times \int\limits_8^9 x dx\\\ \Rightarrow F\left( 9 \right) = \dfrac{1}{{32}}\int\limits_0^8 x dx + 0\\\ \Rightarrow F\left( 9 \right) = \dfrac{1}{{32}}\int\limits_0^8 x dx\end{array}
Rewriting the expression, we get
F(9)=13208x1dx\Rightarrow F\left( 9 \right) = \dfrac{1}{{32}}\int\limits_0^8 {{x^1}} dx
Therefore, we get
F(9)=132(x1+11+1)08\Rightarrow F\left( 9 \right) = \dfrac{1}{{32}}\left. {\left( {\dfrac{{{x^{1 + 1}}}}{{1 + 1}}} \right)} \right|_0^8
Simplifying the expression, we get
F(9)=132(x22)08\Rightarrow F\left( 9 \right) = \dfrac{1}{{32}}\left. {\left( {\dfrac{{{x^2}}}{2}} \right)} \right|_0^8
Substituting the limits into the expression, we get
F(9)=132[822022]\Rightarrow F\left( 9 \right) = \dfrac{1}{{32}}\left[ {\dfrac{{{8^2}}}{2} - \dfrac{{{0^2}}}{2}} \right]
Simplifying the expression, we get
F(9)=132[64202] F(9)=132[320] F(9)=132[32]\begin{array}{l} \Rightarrow F\left( 9 \right) = \dfrac{1}{{32}}\left[ {\dfrac{{64}}{2} - \dfrac{0}{2}} \right]\\\ \Rightarrow F\left( 9 \right) = \dfrac{1}{{32}}\left[ {32 - 0} \right]\\\ \Rightarrow F\left( 9 \right) = \dfrac{1}{{32}}\left[ {32} \right]\end{array}
Multiplying the terms of the expression, we get
F(9)=1\Rightarrow F\left( 9 \right) = 1
Therefore, we get the value of the c.d.f. at x=9x = 9 as 1.

Note: Here we found out the cumulative density function. The cumulative density function gives the probability that a continuous random variable XX takes a value less than or equal to xx. A common mistake is to answer that the c.d.f. is 0 at x=9x = 9, and 0.532=164\dfrac{{0.5}}{{32}} = \dfrac{1}{{64}} at x=0.5x = 0.5. This is incorrect because these are the values of the p.d.f. at the given values of xx.