Solveeit Logo

Question

Question: The following integral \(\int\limits_{\dfrac{\pi }{4}}^{\dfrac{\pi }{2}} {{{\left( {2\cos ec{\text{ ...

The following integral π4π2(2cosec x)17dx\int\limits_{\dfrac{\pi }{4}}^{\dfrac{\pi }{2}} {{{\left( {2\cos ec{\text{ }}x} \right)}^{17}}} dx is equal to
A) 0log(1+2)2(eu+eu)16du\int\limits_0^{\log \left( {1 + \sqrt 2 } \right)} {2{{\left( {{e^u} + {e^{ - u}}} \right)}^{16}}du}
B) 0log(1+2)2(eu+eu)17du\int\limits_0^{\log \left( {1 + \sqrt 2 } \right)} {2{{\left( {{e^u} + {e^{ - u}}} \right)}^{17}}du}
C) 0log(1+2)2(eueu)17du\int\limits_0^{\log \left( {1 + \sqrt 2 } \right)} {2{{\left( {{e^u} - {e^{ - u}}} \right)}^{17}}du}
D) 0log(1+2)2(eueu)16du\int\limits_0^{\log \left( {1 + \sqrt 2 } \right)} {2{{\left( {{e^u} - {e^{ - u}}} \right)}^{16}}du}

Explanation

Solution

In the integral calculus, we are to find a function whose differential is given. Thus, integration is a process that is the inverse of differentiation.
Let dF(x)dx=f(x)\dfrac{{dF\left( x \right)}}{{dx}} = f\left( x \right), then f(x)dx=F(x)+C\smallint f\left( x \right)dx = F\left( x \right) + C , where C is the integration constant.
The given question is not about solving the integral but to change the form of the integral.
The Options of the given question includes the integral in the form of exponential (e)\left( e \right) . Therefore try to substitute the given integral π4π2(2cosec x)17dx\int\limits_{\dfrac{\pi }{4}}^{\dfrac{\pi }{2}} {{{\left( {2\cos ec{\text{ }}x} \right)}^{17}}} dx in exponential as well and change the limits accordingly.

Complete step-by-step answer:
Step 1: Find the Euler form of the integral
The given integral integral π4π2(2cosec x)17dx\int\limits_{\dfrac{\pi }{4}}^{\dfrac{\pi }{2}} {{{\left( {2\cos ec{\text{ }}x} \right)}^{17}}} dx
Let cosec xcotx=et\cos ec{\text{ }}x - \cot x = {e^t} …… (1)
Trigonometric Identity: cosec2xcot2x=1\cos e{c^2}x - {\cot ^2}x = 1
Expand using the identity: a2b2=(a+b)(ab){a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)
Take cosec x=a, cotx=b\cos ec{\text{ }}x = a,{\text{ }}\cot x = b
Therefore, cosec2xcot2x=\cos e{c^2}x - {\cot ^2}x = (cosec xcotx)(cosec x+cotx)=1\left( {\cos ec{\text{ }}x - \cot x} \right)\left( {\cos ec{\text{ }}x + \cot x} \right) = 1
But (cosec xcotx)=et\left( {\cos ec{\text{ }}x - \cot x} \right) = {e^t} , substitute it from equation (1).

(et)(cosec x+cotx)=1 (cosec x+cotx)=1et  \Rightarrow \left( {{e^t}} \right)\left( {\cos ec{\text{ }}x + \cot x} \right) = 1 \\\ \Rightarrow \left( {\cos ec{\text{ }}x + \cot x} \right) = \dfrac{1}{{{e^t}}} \\\

cosec x+cotx=et \Rightarrow \cos ec{\text{ }}x + \cot x = {e^{ - t}} …… (2)
Adding equations (1) and (2)
(cosec xcotx+cosec x+cotx)=et+et\left( {\cos ec{\text{ }}x - \cot x + \cos ec{\text{ }}x + \cot x} \right) = {e^t} + {e^{ - t}}
2cosec x=et+et\Rightarrow 2\cos ec{\text{ }}x = {e^t} + {e^{ - t}}
Or cosec x=et+et2\cos ec{\text{ }}x = \dfrac{{{e^t} + {e^{ - t}}}}{2} …… (3)
Differentiating both sides of equation (1)
cosec xcotx=et\cos ec{\text{ }}x - \cot x = {e^t}
Using the differentiation formulas for: d(cosec x)dx=(cosec x)(cotx)\dfrac{{d\left( {\cos ec{\text{ x}}} \right)}}{{dx}} = - \left( {\cos ec{\text{ }}x} \right)\left( {\cot x} \right) ,
d(cotx)dx=cosec2x\dfrac{{d\left( {\cot x} \right)}}{{dx}} = - \cos e{c^2}x ,
d(et)dt=et\dfrac{{\operatorname{d} \left( {{e^t}} \right)}}{{dt}} = {e^t}
((cosec x)×cotx+cosec2x)dx=etdt\Rightarrow \left( { - \left( {\cos ec{\text{ }}x} \right) \times \cot x + \cos e{c^2}x} \right)dx = {e^t}dt
Taking cosec x\cos ec{\text{ x}}as common
cosec x(cosec xcotx)dx=etdt\Rightarrow \cos ec{\text{ }}x\left( {\cos ec{\text{ }}x - \cot x} \right)dx = {e^t}dt
Substituting cosec x\cos ec{\text{ }}x and (cosec xcotx)\left( {\cos ec{\text{ }}x - \cot x} \right) from equation (3) and (1) respectively.
(et+et2)etdx=etdt\Rightarrow \left( {\dfrac{{{e^t} + {e^{ - t}}}}{2}} \right){e^t}dx = {e^t}dt
dx=2dtet+et\because dx = \dfrac{{2dt}}{{{e^t} + {e^{ - t}}}} …... (4)
So far we have changed the integral cosec x\cos ec{\text{ }}x (i.e. equation 3) and the differential dxdx (i.e. equation 4) in terms of exponential as given the options.
Step 2: Change of limits
For x=π4x = \dfrac{\pi }{4}
et=cosec (π4)cot(π4) 21 t=log(21)  \therefore {e^t} = \cos ec{\text{ }}\left( {\dfrac{\pi }{4}} \right) - \cot \left( {\dfrac{\pi }{4}} \right) \\\ \Rightarrow \sqrt 2 - 1 \\\ \therefore t = \log \left( {\sqrt 2 - 1} \right) \\\
But in the options, limits are given in the form of log(2+1)\log \left( {\sqrt 2 + 1} \right)
Change the values log(21)\log \left( {\sqrt 2 - 1} \right) using the property of logarithmic:
alogb=logbaa\log b = \log {b^a}
We can write t=(1)(1)log(21)t = \left( { - 1} \right)\left( { - 1} \right)\log \left( {\sqrt 2 - 1} \right)
(1)log(21)1 (1)log(121)  \Rightarrow \left( { - 1} \right)\log {\left( {\sqrt 2 - 1} \right)^{ - 1}} \\\ \Rightarrow \left( { - 1} \right)\log \left( {\dfrac{1}{{\sqrt 2 - 1}}} \right) \\\
On rationalizing 121\dfrac{1}{{\sqrt 2 - 1}}
121×2+12+1 2+121=2+1  \Rightarrow \dfrac{1}{{\sqrt 2 - 1}} \times \dfrac{{\sqrt 2 + 1}}{{\sqrt 2 + 1}} \\\ \Rightarrow \dfrac{{\sqrt 2 + 1}}{{2 - 1}} = \sqrt 2 + 1 \\\
Hence, t=(1)log(2+1)t = \left( { - 1} \right)\log \left( {\sqrt 2 + 1} \right)

For x=π2x = \dfrac{\pi }{2}
et=cosec (π2)cot(π2) 10=1 t=ln(1)=0  \therefore {e^t} = \cos ec{\text{ }}\left( {\dfrac{\pi }{2}} \right) - \cot \left( {\dfrac{\pi }{2}} \right) \\\ \Rightarrow 1 - 0 = 1 \\\ \therefore t = \ln \left( 1 \right) = 0 \\\
Therefore, the given integral becomes:
On changing limits and substituting equations (3) and (4)
ln(1+2)0(et+et)172dtet+et\int\limits_{ - \ln \left( {1 + \sqrt 2 } \right)}^0 {{{\left( {{e^t} + {e^{ - t}}} \right)}^{17}}\dfrac{{2dt}}{{{e^t} + {e^{ - t}}}}}
ln(1+2)02(et+et)16dt\Rightarrow \int\limits_{ - \ln \left( {1 + \sqrt 2 } \right)}^0 {2{{\left( {{e^t} + {e^{ - t}}} \right)}^{16}}dt}
Step 3: Change the limits according to the options.
Take t=ut = - u
Differentiating both sides
dt=dudt = - du
Change of limits:
t=log(2+1)u=t=log(2+1) t=0u=0  t = - \log \left( {\sqrt 2 + 1} \right) \Rightarrow u = - t = \log \left( {\sqrt 2 + 1} \right) \\\ t = 0 \Rightarrow u = 0 \\\
On substituting the integral becomes:
ln(1+2)02(eu+e(u))16du- \int\limits_{\ln \left( {1 + \sqrt 2 } \right)}^0 {2{{\left( {{e^{ - u}} + {e^{ - \left( { - u} \right)}}} \right)}^{16}}du}
Using the property of definite integral
abf(x)dx=baf(x)dx\int\limits_a^b {f\left( x \right)} dx = - \int\limits_b^a {f\left( x \right)} dx i.e. when upper limits and lower limits are interchanged, the integral is multiplied by a minus sign, .
0ln(1+2)2(eu+eu)16du\Rightarrow \int\limits_0^{\ln \left( {1 + \sqrt 2 } \right)} {2{{\left( {{e^{ - u}} + {e^u}} \right)}^{16}}du}
Or 0ln(1+2)2(eu+eu)16du\int\limits_0^{\ln \left( {1 + \sqrt 2 } \right)} {2{{\left( {{e^u} + {e^{ - u}}} \right)}^{16}}du}
On simplification of the given integral, it comes out to be0ln(1+2)2(eu+eu)16du\int\limits_0^{\ln \left( {1 + \sqrt 2 } \right)} {2{{\left( {{e^u} + {e^{ - u}}} \right)}^{16}}du} .

Thus, the correct option is (A).

Note: Carefully do the calculation, emphasize on each and every step especially while changing
limits of the integral.
Similarly, if the given question was integral to secx\sec x.
You should substitute secxtanx=et\sec x - \tan x = {e^t}. With the use of trigonometric identity sec2xtan2x=1{\sec ^2}x - {\tan ^2}x = 1 , you can easily calculate secxtanx\sec x - \tan x similarly as calculated above.