Solveeit Logo

Question

Question: The following expression can be written as: \(\dfrac{{\tan A}}{{1 - \cot A}} + \dfrac{{\cot A}}{{1...

The following expression can be written as:
tanA1cotA+cotA1tanA\dfrac{{\tan A}}{{1 - \cot A}} + \dfrac{{\cot A}}{{1 - \tan A}}

Explanation

Solution

Hint: In order to solve this problem you need to use the formulas tanA=sinAcosAand cotA=cosAsinA\tan A = \dfrac{{\sin A}}{{\cos A}}\,\,\,{\text{and }}\cot A = \dfrac{{\cos A}}{{\sin A}}. Using these and simplifying we get the simplified equation.

Complete step-by-step answer:
The given equation is tanA1cotA+cotA1tanA\dfrac{{\tan A}}{{1 - \cot A}} + \dfrac{{\cot A}}{{1 - \tan A}}.
Putting tanA=sinAcosAand cotA=cosAsinA\tan A = \dfrac{{\sin A}}{{\cos A}}\,\,\,{\text{and }}\cot A = \dfrac{{\cos A}}{{\sin A}} the above equation can be written as:
sinAcosA1cosAsinA+cosAsinA1sinAcosA\Rightarrow \dfrac{{\dfrac{{\sin A}}{{\cos A}}}}{{1 - \dfrac{{\cos A}}{{\sin A}}}} + \dfrac{{\dfrac{{\cos A}}{{\sin A}}}}{{1 - \dfrac{{\sin A}}{{\cos A}}}}
On solving it further we get,
sinAcosAsinAcosAsinA+cosAsinAcosAsinAcosA sin2AcosA(sinAcosA)+cos2AsinA(cosAsinA) sin3Acos3AsinAcosA(sinAcosA)  \Rightarrow \dfrac{{\dfrac{{\sin A}}{{\cos A}}}}{{\dfrac{{\sin A - \cos A}}{{\sin A}}}} + \dfrac{{\dfrac{{\cos A}}{{\sin A}}}}{{\dfrac{{\cos A - \sin A}}{{\cos A}}}} \\\ \Rightarrow \dfrac{{{{\sin }^2}A}}{{\cos A(\sin A - \cos A)}} + \dfrac{{{{\cos }^2}A}}{{\sin A(\cos A - \sin A)}} \\\ \Rightarrow \dfrac{{{{\sin }^3}A - {{\cos }^3}A}}{{\sin A\cos A(\sin A - \cos A)}} \\\
We know that a3b3=(ab)(a2+ab+b2){a^3} - {b^3} = (a - b)({a^2} + ab + {b^2})
(sinAcosA)(sin2A+cos2A+sinAcosA)sinAcosA(sinAcosA) 1+sinAcosAsinAcosA(As sin2x+cos2x=1)  \Rightarrow \dfrac{{(\sin A - \cos A)({{\sin }^2}A + {{\cos }^2}A + \sin A\cos A)}}{{\sin A\cos A(\sin A - \cos A)}} \\\ \Rightarrow \dfrac{{1 + \sin A\cos A}}{{\sin A\cos A}}\,\,\,\,\,\,({\text{As si}}{{\text{n}}^2}x + {\cos ^2}x = 1) \\\
And we also know that 1sinx=cosecx&1cosx=secx\dfrac{1}{{\sin x}} = \cos ecx\,\,\,\,\& \,\,\,\,\dfrac{1}{{\cos x}} = \sec x.
Further simplifying the equation 1+sinAcosAsinAcosA\dfrac{{1 + \sin A\cos A}}{{\sin A\cos A}}\, we get,
1+sinAcosAsinAcosA=1sinAcosA+sinAcosAsinAcosA secAcosecA+1  \Rightarrow \dfrac{{1 + \sin A\cos A}}{{\sin A\cos A}}\, = \dfrac{1}{{\sin A\cos A}} + \dfrac{{\sin A\cos A}}{{\sin A\cos A}} \\\ \Rightarrow \sec A\cos ecA + 1 \\\
Hence, the term tanA1cotA+cotA1tanA\dfrac{{\tan A}}{{1 - \cot A}} + \dfrac{{\cot A}}{{1 - \tan A}} can also be written as secAcosecA+1\sec A\cos ecA + 1.

Note: In this question you just have to use the formulas tanA=sinAcosAand cotA=cosAsinA\tan A = \dfrac{{\sin A}}{{\cos A}}\,\,\,{\text{and }}\cot A = \dfrac{{\cos A}}{{\sin A}} and also sin2x+cos2x=1{\text{si}}{{\text{n}}^2}x + {\cos ^2}x = 1. Using these and simplifying we will get the simplified term as an answer to this question.