Solveeit Logo

Question

Question: The following equation \(\dfrac{{k{{\left( {x + 1} \right)}^2}}}{3} + \dfrac{{{{\left( {y + 2} \righ...

The following equation k(x+1)23+(y+2)24k=1\dfrac{{k{{\left( {x + 1} \right)}^2}}}{3} + \dfrac{{{{\left( {y + 2} \right)}^2}}}{{4k}} = 1 represent a circle. Find the value of kk.

Explanation

Solution

Convert the given equation in the form of standard general equation of second degree ax2+2hxy+by2+2gx+2fy+c=0a{x^2} + 2hxy + b{y^2} + 2gx + 2fy + c = 0 and then apply the condition for this equation to represent a circle, i.e., Coefficient of x2{x^2}= Coefficient of y2{y^2} (a=ba = b) and Coefficient of xy=0xy = 0 (h=0h = 0).

Complete step by step solution:
Given equation is k(x+1)23+(y+2)24k=1\dfrac{{k{{\left( {x + 1} \right)}^2}}}{3} + \dfrac{{{{\left( {y + 2} \right)}^2}}}{{4k}} = 1.
Solve the given equation by taking LCM of denominator.
4kk(x+1)2+3(y+2)23×4k=1\Rightarrow \dfrac{{4k \cdot k{{\left( {x + 1} \right)}^2} + 3{{\left( {y + 2} \right)}^2}}}{{3 \times 4k}} = 1
4k2(x2+1+2x)+3(y2+4+4y)12k=1\Rightarrow \dfrac{{4{k^2}\left( {{x^2} + 1 + 2x} \right) + 3\left( {{y^2} + 4 + 4y} \right)}}{{12k}} = 1
4k2(x2+1+2x)+3(y2+4+4y)=12k\Rightarrow 4{k^2}\left( {{x^2} + 1 + 2x} \right) + 3\left( {{y^2} + 4 + 4y} \right) = 12k
4k2x2+4k2+8k2x+3y2+12+12y=12k\Rightarrow 4{k^2}{x^2} + 4{k^2} + 8{k^2}x + 3{y^2} + 12 + 12y = 12k
4k2x2+3y2+8k2x+12y+4k212k+12=0\Rightarrow 4{k^2}{x^2} + 3{y^2} + 8{k^2}x + 12y + 4{k^2} - 12k + 12 = 0 …. (1)
We have given that the above equation (1) represents a circle.
Condition for the general equation of second degree in xx and yyviz., ax2+2hxy+by2+2gx+2fy+c=0a{x^2} + 2hxy + b{y^2} + 2gx + 2fy + c = 0 to represent a circle is: a=ba = band h=0h = 0.
a=ba = b implies that coefficient of x2{x^2}= coefficient of y2{y^2}
4k2=3\therefore 4{k^2} = 3 [from(1)]
k2=34\Rightarrow {k^2} = \dfrac{3}{4}
On taking square root,
k=34\Rightarrow k = \sqrt {\dfrac{3}{4}}
k=32\Rightarrow k = \dfrac{{\sqrt 3 }}{2}

Hence the value of kk should be 32\dfrac{{\sqrt 3 }}{2} so that the given equation represents a circle.

Note:
The general equation of second degree in xx and yyviz., ax2+2hxy+by2+2gx+2fy+c=0a{x^2} + 2hxy + b{y^2} + 2gx + 2fy + c = 0, represent a circle if a=ba = b and h=0h = 0. Therefore, the general equation of circle is x2+y2+2gx+2fy+c=0{x^2} + {y^2} + 2gx + 2fy + c = 0, whose centre is (g,f)\left( { - g, - f} \right) and radius is g2+f2c\sqrt {{g^2} + {f^2} - c} .