Solveeit Logo

Question

Chemistry Question on Chemical Kinetics

The following data were obtained during the first order thermal decomposition of a gas A at constant volume:\text{A(g)} \rightarrow 2\text{B(g)} + \text{C(g)}$$$$\begin{array}{|c|c|c|}\hline\text{S.No} & \text{Time/s} & \text{Total pressure/(atm)} \\\\\hline1 & 0 & 0.1 \\\2 & 115 & 0.28 \\\\\hline\end{array}The rate constant of the reaction is _____ ×102\times 10^{-2} s1^{-1} (nearest integer).

Answer

Rate Constant Calculation for a First-Order Reaction}
Step-by-step Calculation:
- Consider the initial pressure of AA at t=0t = 0 as P0=0.1atmP_0 = 0.1 \, \text{atm}.
- At t=115st = 115 \, \text{s}, the total pressure is P=0.28atmP = 0.28 \, \text{atm}.
- Let the partial pressure of decomposed AA be xx.
Total pressure=P0+x+2x=P0+3x\text{Total pressure} = P_0 + x + 2x = P_0 + 3x
Substituting the given values:
0.28=0.1+3x    3x=0.18    x=0.06atm0.28 = 0.1 + 3x \implies 3x = 0.18 \implies x = 0.06 \, \text{atm}
The remaining pressure of AA at t=115st = 115 \, \text{s} is:
PA=P0x=0.10.06=0.04atmP_A = P_0 - x = 0.1 - 0.06 = 0.04 \, \text{atm}
Rate Constant Calculation for First-Order Reaction:
The first-order rate constant kk is given by:
k=1tln(P0PA)k = \frac{1}{t} \ln \left( \frac{P_0}{P_A} \right)
Substituting the known values:
k=1115ln(0.10.04)=1115ln(2.5)k = \frac{1}{115} \ln \left( \frac{0.1}{0.04} \right) = \frac{1}{115} \ln(2.5)
Using ln(2.5)0.916\ln(2.5) \approx 0.916:
k=0.9161150.00796s1k = \frac{0.916}{115} \approx 0.00796 \, \text{s}^{-1}
Converting to the required form:
k8×103s1k \approx 8 \times 10^{-3} \, \text{s}^{-1}
Rounding to the nearest integer:
k2×102s1k \approx 2 \times 10^{-2} \, \text{s}^{-1}
Conclusion: The rate constant of the reaction is approximately 2×102s12 \times 10^{-2} \, \text{s}^{-1}.

Explanation

Solution

Rate Constant Calculation for a First-Order Reaction}
Step-by-step Calculation:
- Consider the initial pressure of AA at t=0t = 0 as P0=0.1atmP_0 = 0.1 \, \text{atm}.
- At t=115st = 115 \, \text{s}, the total pressure is P=0.28atmP = 0.28 \, \text{atm}.
- Let the partial pressure of decomposed AA be xx.
Total pressure=P0+x+2x=P0+3x\text{Total pressure} = P_0 + x + 2x = P_0 + 3x
Substituting the given values:
0.28=0.1+3x    3x=0.18    x=0.06atm0.28 = 0.1 + 3x \implies 3x = 0.18 \implies x = 0.06 \, \text{atm}
The remaining pressure of AA at t=115st = 115 \, \text{s} is:
PA=P0x=0.10.06=0.04atmP_A = P_0 - x = 0.1 - 0.06 = 0.04 \, \text{atm}
Rate Constant Calculation for First-Order Reaction:
The first-order rate constant kk is given by:
k=1tln(P0PA)k = \frac{1}{t} \ln \left( \frac{P_0}{P_A} \right)
Substituting the known values:
k=1115ln(0.10.04)=1115ln(2.5)k = \frac{1}{115} \ln \left( \frac{0.1}{0.04} \right) = \frac{1}{115} \ln(2.5)
Using ln(2.5)0.916\ln(2.5) \approx 0.916:
k=0.9161150.00796s1k = \frac{0.916}{115} \approx 0.00796 \, \text{s}^{-1}
Converting to the required form:
k8×103s1k \approx 8 \times 10^{-3} \, \text{s}^{-1}
Rounding to the nearest integer:
k2×102s1k \approx 2 \times 10^{-2} \, \text{s}^{-1}
Conclusion: The rate constant of the reaction is approximately 2×102s12 \times 10^{-2} \, \text{s}^{-1}.