Solveeit Logo

Question

Question: The following data shows that the age distribution of patients of malaria in a village during a part...

The following data shows that the age distribution of patients of malaria in a village during a particular month. Find the average age of the patients.

Age in yearsNo of cases
5145 - 1466
152415 - 241111
253425 - 342121
354435 - 442323
455445 - 541414
556455 - 6455
657465 - 7433

(A) 36.12({\text{A) 36}}{\text{.12}}
(B) 36.13(B{\text{) 36}}{\text{.13}}
(C) 13.36(C{\text{) 13}}{\text{.36}}
(D) 23.36({\text{D) 23}}{\text{.36}}

Explanation

Solution

First, we have to find the class mark (mid-value of the intervals).
Multiply it with the f, frequencies to get xifi\sum {{{\text{x}}_{\text{i}}}} {{\text{f}}_{\text{i}}} and using mean formula we will be able to find the answer.

Formula used: Mid value = lower limit + upper limit2{\text{Mid value = }}\dfrac{{{\text{lower limit + upper limit}}}}{2}
To find mean,
x = xififi\overline {\text{x}} {\text{ = }}\dfrac{{\sum {{{\text{x}}_{\text{i}}}} {{\text{f}}_{\text{i}}}}}{{{{\sum {\text{f}} }_{\text{i}}}}}

Complete step-by-step solution:
This is a grouped data where class intervals are given. So, we need to find class marks.
Class mark is nothing but mid value of intervals (class mark is taken as (xi){\text{(}}{{\text{x}}_{\text{i}}}{\text{)}})
Here the formula for Mid value = lower limit + upper limit2{\text{Mid value = }}\dfrac{{{\text{lower limit + upper limit}}}}{2}
Then we get, 5(lower limit) + 14(upper limit)2\dfrac{{{\text{5}}\left( {{\text{lower limit}}} \right){\text{ + 14(upper limit)}}}}{{\text{2}}}
On adding the numerator terms and we get,
=192= \dfrac{{19}}{2}
Let us divide,
9.5\Rightarrow 9.5
15(lower limit) + 24(upper limit)2\dfrac{{15\left( {{\text{lower limit}}} \right){\text{ + 24(upper limit}})}}{2}
On adding the numerator terms and we get,
392\Rightarrow \dfrac{{39}}{2}
Let us divide,
19.5\Rightarrow 19.5
25(lower limit) + 34(upper limit)2\dfrac{{{\text{25}}\left( {{\text{lower limit}}} \right){\text{ + 34(upper limit)}}}}{{\text{2}}}
On adding the numerator terms and we get,
592\Rightarrow \dfrac{{59}}{2}
Let us divide,
29.5\Rightarrow 29.5
35(lower limit) + 44(upper limit)2\dfrac{{35\left( {{\text{lower limit}}} \right){\text{ + 44(upper limit}})}}{2}
On adding the numerator terms and we get,
792\Rightarrow \dfrac{{79}}{2}
Let us divide,
39.5\Rightarrow 39.5
45(lower limit) + 54(upper limit)2\dfrac{{{\text{45}}\left( {{\text{lower limit}}} \right){\text{ + 54(upper limit)}}}}{{\text{2}}}
On adding the numerator terms and we get,
992\Rightarrow \dfrac{{99}}{2}
Let us divide,
49.5\Rightarrow 49.5
55(lower limit) + 64(upper limit)2\dfrac{{{\text{55}}\left( {{\text{lower limit}}} \right){\text{ + 64(upper limit)}}}}{{\text{2}}}
On adding the numerator terms and we get,
1192\Rightarrow \dfrac{{119}}{2}
Let us divide,
59.5\Rightarrow 59.5
65(lower limit) + 74(upper limit)2\dfrac{{{\text{65}}\left( {{\text{lower limit}}} \right){\text{ + 74(upper limit)}}}}{{\text{2}}}
On adding the numerator terms and we get,
1392\Rightarrow \dfrac{{139}}{2}
Let us divide,
69.5\Rightarrow 69.5
Now, we have to find fixi{{\text{f}}_{\text{i}}}{{\text{x}}_{\text{i}}} by multiplying (fi){\text{(}}{{\text{f}}_{\text{i}}})and (xi){\text{(}}{{\text{x}}_{\text{i}}}{\text{)}} to compute mean.
i.e., 6×9.5=576 \times 9.5 = 57, like this we get 214.5,619.5,908.5,693,297.5214.5,619.5,908.5,693,297.5 and 208.5208.5

Age (in years)No of cases (fi){\text{(}}{{\text{f}}_{\text{i}}}{\text{)}}Class mark (xi){\text{(}}{{\text{x}}_{\text{i}}}{\text{)}}fixi{{\text{f}}_{\text{i}}}{{\text{x}}_{\text{i}}}
5145 - 14669.59.55757
152415 - 24111119.519.5214.5214.5
253425 - 34212129.529.5619.5619.5
354435 - 44232339.539.5908.5908.5
455445 - 54141449.549.5693693
556455 - 645559.559.5297.5297.5
657465 - 743369.569.5208.5208.5
{\sum {\text{f}} _{\text{i}}} = $$$$83fixi=2998.5{\sum {\text{f}} _{\text{i}}}{{\text{x}}_{\text{i}}} = 2998.5

Add all the fixi{{\text{f}}_{\text{i}}}{{\text{x}}_{\text{i}}} and (fi){\text{(}}{{\text{f}}_{\text{i}}}) to get fixi{\sum {\text{f}} _{\text{i}}}{{\text{x}}_{\text{i}}} and fi{\sum {\text{f}} _{\text{i}}}.
So here we have,
fi{\sum {\text{f}} _{\text{i}}} = 83
fixi{\sum {\text{f}} _{\text{i}}}{{\text{x}}_{\text{i}}} = 2998.5
To find mean, the formula is x = xififi\overline {\text{x}} {\text{ = }}\dfrac{{\sum {{{\text{x}}_{\text{i}}}} {{\text{f}}_{\text{i}}}}}{{{{\sum {\text{f}} }_{\text{i}}}}}
Substituting the formula, we get
x=2998.583\overline {\text{x}} = \dfrac{{2998.5}}{{83}}
=36.126= 36.126
=36.13= 36.13

Therefore the correct answer is option (B) 36.13({\text{B) }}36.13

Note: In this Alternative method:
We can avoid the tedious calculations of computing mean (xi){\text{(}}{{\text{x}}_{\text{i}}}{\text{)}} by using step-deviation method. In this method, we take an assumed mean which is in the middle or just close to it in the data.
A = Assumed mean{\text{A = Assumed mean}}
C = Class length{\text{C = Class length}} i.e., in the given class interval, there are 1010 variables in between.
Formula used:
di = xi - Ac{{\text{d}}_{\text{i}}}{\text{ = }}\dfrac{{{{\text{x}}_{\text{i}}}{\text{ - A}}}}{{\text{c}}}
x = A + dififi × C\overline {\text{x}} {\text{ = A + }}\dfrac{{\sum {{{\text{d}}_{\text{i}}}} {{\text{f}}_{\text{i}}}}}{{{{\sum {\text{f}} }_{\text{i}}}}}{\text{ }} \times {\text{ C}} So here,
A = 39.5{\text{A = 39}}{\text{.5}}
C = 10{\text{C = 10}}
di = xi - Ac{{\text{d}}_{\text{i}}}{\text{ = }}\dfrac{{{{\text{x}}_{\text{i}}}{\text{ - A}}}}{{\text{c}}}

Age (in years)No of cases (fi){\text{(}}{{\text{f}}_{\text{i}}}{\text{)}}Class mark (xi){\text{(}}{{\text{x}}_{\text{i}}}{\text{)}}di = xi - Ac{{\text{d}}_{\text{i}}}{\text{ = }}\dfrac{{{{\text{x}}_{\text{i}}}{\text{ - A}}}}{{\text{c}}}(difi)({{\text{d}}_{\text{i}}}{{\text{f}}_{\text{i}}}{\text{)}}
5145 - 14669.59.59.5 - 39.510=3010=3\dfrac{{{\text{9}}{\text{.5 - 39}}{\text{.5}}}}{{10}} = \dfrac{{ - 30}}{{10}} = - 33×6=18 - 3 \times 6 = - 18
152415 - 24111119.519.519.5 - 39.510=2010=2\dfrac{{{\text{19}}{\text{.5 - 39}}{\text{.5}}}}{{10}} = \dfrac{{ - 20}}{{10}} = - 22×11=22 - 2 \times 11 = - 22
253425 - 34212129.529.529.5 - 39.510=1010=1\dfrac{{{\text{29}}{\text{.5 - 39}}{\text{.5}}}}{{10}} = \dfrac{{ - 10}}{{10}} = - 11×21=21 - 1 \times 21 = - 21
354435 - 44232339.539.539.5 - 39.510=010=0\dfrac{{{\text{39}}{\text{.5 - 39}}{\text{.5}}}}{{10}} = \dfrac{0}{{10}} = 00×23=00 \times 23 = 0
455445 - 54141449.549.549.5 - 39.510=1010=1\dfrac{{{\text{49}}{\text{.5 - 39}}{\text{.5}}}}{{10}} = \dfrac{{10}}{{10}} = 11×14=141 \times 14 = 14
556455 - 645559.559.559.5 - 39.510=2010=2\dfrac{{{\text{59}}{\text{.5 - 39}}{\text{.5}}}}{{10}} = \dfrac{{20}}{{10}} = 22×5=102 \times 5 = 10
657465 - 743369.569.569.5 - 39.510=3010=3\dfrac{{{\text{69}}{\text{.5 - 39}}{\text{.5}}}}{{10}} = \dfrac{{30}}{{10}} = 33×3=93 \times 3 = 9
fi= 83{\sum {\text{f}} _{\text{i}}} = {\text{ 83}}difi=28{\sum {\text{d}} _{\text{i}}}{{\text{f}}_{\text{i}}} = - 28

Add all the (difi)({{\text{d}}_{\text{i}}}{{\text{f}}_{\text{i}}}{\text{)}} and (fi){\text{(}}{{\text{f}}_{\text{i}}}) to get difi{\sum {\text{d}} _{\text{i}}}{{\text{f}}_{\text{i}}} and fi{\sum {\text{f}} _{\text{i}}}.
difi=28{\sum {\text{d}} _{\text{i}}}{{\text{f}}_{\text{i}}} = - 28
fi= 83{\sum {\text{f}} _{\text{i}}} = {\text{ 83}}
Now,
x = A + dififi × C\overline {\text{x}} {\text{ = A + }}\dfrac{{\sum {{{\text{d}}_{\text{i}}}} {{\text{f}}_{\text{i}}}}}{{{{\sum {\text{f}} }_{\text{i}}}}}{\text{ }} \times {\text{ C}}
Applying the formula,
x = 39.5 + [(28)83 × 10]\overline {\text{x}} {\text{ = 39}}{\text{.5 + }}\left[ {\dfrac{{( - 28)}}{{83}}{\text{ }} \times {\text{ 10}}} \right]
On dividing the bracket term and we get,
x = 39.5 + [ - 0.337 × 10]\overline {\text{x}} {\text{ = 39}}{\text{.5 + }}\left[ {{\text{ - 0}}{\text{.337 }} \times {\text{ 10}}} \right]
On multiply the terms and we get,
x = 39.5 + [3.37]\overline {\text{x}} {\text{ = 39}}{\text{.5 + }}\left[ { - 3.37} \right]
Let us subtracting the terms and we get,
x = 36.13\overline {\text{x}} {\text{ = 36}}{\text{.13}}
We got the answer.