Solveeit Logo

Question

Mathematics Question on Parabola

The focus of the parabola y24yx+3=0y^2 - 4y - x+3=0 is

A

(34,2)\left( \frac{3}{4} , 2 \right)

B

(34,2)\left( \frac{3}{4} , - 2 \right)

C

(2,34)\left( 2 , \frac{3}{4} \right)

D

(34,2)\left( \frac{-3}{4} , 2 \right)

Answer

(34,2)\left( \frac{-3}{4} , 2 \right)

Explanation

Solution

y24yx+3=0y^{2}-4 y-x+3=0 (y2)24x+3=0(y-2)^{2}-4-x+3 =0 (y2)2x1=0(y-2)^{2}-x-1 =0 (y2)2=(x+1)(y-2)^{2} =(x+1) Let Y2=XY^{2}=X ...(i) Here, Y=(y2),X=(x+1)Y=(y-2), X=(x+1) Vertices (X=0,Y=0)=(2,1)(X=0, Y=0)=(2,-1) E (i) comparing on y2=4axy^{2}=4 a x 4a=14 a=1 a=14\Rightarrow \, a=\frac{1}{4} \therefore Focus =(141,2)=(34,2)=\left(\frac{1}{4}-1,2\right)=\left(-\frac{3}{4}, 2\right)