Solveeit Logo

Question

Question: The foci of the hyperbola \(9x^{2} - 16y^{2} = 144\) are...

The foci of the hyperbola 9x216y2=1449x^{2} - 16y^{2} = 144 are

A

(±4,0)( \pm 4,0)

B

(0,±4)(0, \pm 4)

C

(±5,0)( \pm 5,0)

D

(0,±5)(0, \pm 5)

Answer

(±5,0)( \pm 5,0)

Explanation

Solution

The equation of hyperbola is x216y29=1\frac{x^{2}}{16} - \frac{y^{2}}{9} = 1.

Now, b2=a2(e21)b^{2} = a^{2}(e^{2} - 1)9=16(e21)9 = 16(e^{2} - 1)e=54e = \frac{5}{4}. Hence foci

are (±ae,0)( \pm ae,0) = (±4.54,0)\left( \pm 4.\frac{5}{4},0 \right) i.e., (±5,0)( \pm 5,0)