Solveeit Logo

Question

Question: The foci of the ellipse \(25(x + 1)^{2} + 9(y + 2)^{2} = 225\)are...

The foci of the ellipse 25(x+1)2+9(y+2)2=22525(x + 1)^{2} + 9(y + 2)^{2} = 225are

A

(1,2),(6,1)( - 1,2),(6,1)

B

(1,2),(1,6)( - 1, - 2),(1,6)

C

(1,2),(1,6)(1, - 2),(1, - 6)

D

(1,2),(1,6)( - 1,2),( - 1, - 6)

Answer

(1,2),(1,6)( - 1,2),( - 1, - 6)

Explanation

Solution

Given ellipse is (x+1)29+(y+2)225=1\frac{(x + 1)^{2}}{9} + \frac{(y + 2)^{2}}{25} = 1 i.e. X29+Y225=1\frac{X^{2}}{9} + \frac{Y^{2}}{25} = 1, where X=x+1X = x + 1and Y=y+2Y = y + 2

Here a2=25,b2=9a^{2} = 25,b^{2} = 9 [Type : X2b2+Y2a2=1]\frac{X^{2}}{b^{2}} + \frac{Y^{2}}{a^{2}} = 1\rbrack

Eccentricity is given by e2=a2b2a2=25925=1625e^{2} = \frac{a^{2} - b^{2}}{a^{2}} = \frac{25 - 9}{25} = \frac{16}{25}, e=45\therefore e = \frac{4}{5}

Foci are given by Y=±ae=±5(45)=±4Y = \pm ae = \pm 5\left( \frac{4}{5} \right) = \pm 4

X=0X = 0y+2=±4y + 2 = \pm 4y=2±4=6y = - 2 \pm 4 = - 6 or 2

x+1=0x + 1 = 0x=1x = - 1. Hence foci are (–1, –6) or (–1, 2).