Solveeit Logo

Question

Question: The foci of an ellipse coincide with the vertices of a hyperbola and vertices of the ellipse coincid...

The foci of an ellipse coincide with the vertices of a hyperbola and vertices of the ellipse coincide with the foci of the hyperbola. If l1,l2l_{1},l_{2} are their eccentricities then

A

l12+l22=1l_{1}^{2} + l_{2}^{2} = 1

B

l12+l22l_{1}^{2} + l_{2}^{2}=l12l22l_{1}^{2}l_{2}^{2}

C

l1+l2=2l_{1} + l_{2} = 2

D

l1l2=1l_{1}l_{2} = 1

Answer

l12+l22=1l_{1}^{2} + l_{2}^{2} = 1

Explanation

Solution

Let a, b, l1 are semi major axis, semi minor axis and

eccentricity of ellipse.

a1,b1,l2\mathbf{a}^{\mathbf{1}}\mathbf{,}\mathbf{b}^{\mathbf{1}}\mathbf{,}\mathbf{l}_{\mathbf{2}} are semi transverse axis, semi conjugate axis and

eccentricity of Hyperbola.

Given (al1,0)6mu=\mathcal{l}_{1},0)\mspace{6mu} = (a1, 0) ⇒ aa1=1l1\frac{a}{a^{1}} = \frac{1}{\mathcal{l}_{1}}

(a, 0) = (a1l2,0)(a^{1}\mathcal{l}_{2},0)aa1=l2\frac{a}{a^{1}} = \mathcal{l}_{2}

l1l2=1\mathcal{l}_{1}\mathcal{l}_{2} = 1