Solveeit Logo

Question

Question: The foci of a hyperbola coincide with foci of the ellipse \(\frac{x^{2}}{25}\)+ \(\frac{y^{2}}{4}\)=...

The foci of a hyperbola coincide with foci of the ellipse x225\frac{x^{2}}{25}+ y24\frac{y^{2}}{4}= 1. If its eccentricity is 2 then its equation must be-

A

x24\frac{x^{2}}{4}y212\frac{y^{2}}{12}= 1

B

x212\frac{x^{2}}{12}y24\frac{y^{2}}{4}= 1

C

x24\frac{x^{2}}{4}y212\frac{y^{2}}{12}= –1

D

None of these

Answer

None of these

Explanation

Solution

x225\frac{x^{2}}{25}+y24\frac{y^{2}}{4}= 1 … (1)

a12 = 25 ; b12 = 4

e1 = 1b12a12\sqrt{1 - \frac{b_{1}^{2}}{a_{1}^{2}}}= 1425\sqrt{1 - \frac{4}{25}}= 215\frac{\sqrt{21}}{5}

\ Focus of ellipse (1) Ž S (± ae, 0)

Ž 5 {±5215,0}\left\{ \pm 5\frac{\sqrt{21}}{5},0 \right\}= (±21\sqrt{21}, 0)

\ Hyperbola is Ž x2a22\frac{x^{2}}{{a_{2}}^{2}}y2b22\frac{y^{2}}{{b_{2}}^{2}}= 1 … (2)

Given a1e1 = a2e2 \ e2 = 2

Ž 21\sqrt{21}= 2a2 Ž a22a_{2}^{2}= 214\frac{21}{4}

Ž b22 = a22 (e22 –1) = 214\frac{21}{4} (4 –1) = 214\frac{21}{4}× 3 = 634\frac{63}{4}

\ equation of hyperbola is

Ž x2(21/4)\frac{x^{2}}{(21/4)}y2(63/4)\frac{y^{2}}{(63/4)}= 1 Ž x221\frac{x^{2}}{21}y263\frac{y^{2}}{63}= 14\frac{1}{4}