Solveeit Logo

Question

Question: The focal length of a mirror is given by\(\frac{1}{v} - \frac{1}{u} = \frac{2}{f}\). If errors are m...

The focal length of a mirror is given by1v1u=2f\frac{1}{v} - \frac{1}{u} = \frac{2}{f}. If errors are made in measuring u and v are a, then the relative error in f is –

A

2α\frac{2}{\alpha}

B

a(1u+1v)\left( \frac{1}{u} + \frac{1}{v} \right)

C

α(1u1v)\alpha\left( \frac{1}{u} - \frac{1}{v} \right)

D

None of these

Answer

a(1u+1v)\left( \frac{1}{u} + \frac{1}{v} \right)

Explanation

Solution

We have,

1v1u\frac{1}{v} - \frac{1}{u} = 2f\frac{2}{f}

Ž d(1v1u)\left( \frac{1}{v} - \frac{1}{u} \right) = d (2f)\left( \frac{2}{f} \right)

Ž –1v2\frac{1}{v^{2}}dv + 1u2\frac{1}{u^{2}}du = –2f2\frac{2}{f^{2}}df

Ž (1v21u2)\left( \frac{1}{v^{2}} - \frac{1}{u^{2}} \right) a = 2f2\frac{2}{f^{2}} df

[Q du = dv = a]

Ž a(1v+1u)\left( \frac{1}{v} + \frac{1}{u} \right) (1v1u)\left( \frac{1}{v} - \frac{1}{u} \right) = 2f2\frac{2}{f^{2}} df

Ž a(1v+1u)\left( \frac{1}{v} + \frac{1}{u} \right) × 2f\frac{2}{f} = 2f2\frac{2}{f^{2}} df[1v1u=2f]\left\lbrack \because\frac{1}{v} - \frac{1}{u} = \frac{2}{f} \right\rbrack

Ž dff\frac{df}{f} = a(1u+1v)\left( \frac{1}{u} + \frac{1}{v} \right)

Ž Relative error in f = a (1u+1v)\left( \frac{1}{u} + \frac{1}{v} \right).

Hence (2) is the correct answer.