Solveeit Logo

Question

Question: The‌ ‌first,‌ ‌second‌ ‌and‌ ‌middle‌ ‌terms‌ ‌of‌ ‌an‌ ‌AP‌ ‌are‌ ‌a,‌ ‌b,‌ ‌c‌ ‌respectively.‌ ‌Th...

The‌ ‌first,‌ ‌second‌ ‌and‌ ‌middle‌ ‌terms‌ ‌of‌ ‌an‌ ‌AP‌ ‌are‌ ‌a,‌ ‌b,‌ ‌c‌ ‌respectively.‌ ‌Their‌ ‌sum‌ ‌is‌ ‌

Explanation

Solution

Before solving the above let's discuss the AP or arithmetic progression. In mathematics, an arithmetic progression or AP or arithmetic sequence is a sequence of numbers such that the difference between the consecutive terms is constant.

Complete step by step solution:
If the initial term of the arithmetic progression is a1{{a}_{1}}and the common difference of successive members is dd, then the nthnth term of the sequence (an)\left( {{a}_{n}} \right) is given by:
an=a1+(n1)d\Rightarrow {{a}_{n}}={{a}_{1}}+\left( n-1 \right)d and we can also write if we consider m=1m=1 then in general way we can write
an=am+(nm)d\Rightarrow {{a}_{n}}={{a}_{m}}+\left( n-m \right)d
A finite portion of an arithmetic progression is called a finite arithmetic progression and the sum of a finite arithmetic progression is called an arithmetic series. Now we know that the general formula to find the sum of the arithmetic progression is
S=n2(2a+(n1)d)\Rightarrow S=\dfrac{n}{2}\left( 2a+\left( n-1 \right)d \right)
The middle term in AP is exist when noddn\to odd otherwise the middle term is become zero
Now we know,
d=ba\Rightarrow d=b-a
Here we can also write
c=a+(n+121)d\Rightarrow c=a+\left( \dfrac{n+1}{2}-1 \right)d
Or we can write
c=a+(n12)(ba) 2c=2a+(n1)(ba) \begin{aligned} & \Rightarrow c=a+\left( \dfrac{n-1}{2} \right)\left( b-a \right) \\\ & \Rightarrow 2c=2a+\left( n-1 \right)\left( b-a \right) \\\ \end{aligned}
Now find the value ofnnfrom the above equation, we get
n1=2c2aba n=2c+b3aba \begin{aligned} & \Rightarrow n-1=\dfrac{2c-2a}{b-a} \\\ & \Rightarrow n=\dfrac{2c+b-3a}{b-a} \\\ \end{aligned}
Now we know that the sum of the terms S=n2(2a+(n1)d)S=\dfrac{n}{2}\left( 2a+\left( n-1 \right)d \right), put the value of nn in this sum formula we get,
S=2c+b3a2(ba)[2a+(2c2aba)(ba)] S=2c+b3a2(ba)(2c) \begin{aligned} & \Rightarrow S=\dfrac{2c+b-3a}{2\left( b-a \right)}\left[ 2a+\left( \dfrac{2c-2a}{b-a} \right)\left( b-a \right) \right] \\\ & \Rightarrow S=\dfrac{2c+b-3a}{2\left( b-a \right)}\left( 2c \right) \\\ \end{aligned}
More simplifying it we get,
S=(2c+b3aba)c S=2c(ca)ba+c \begin{aligned} & \Rightarrow S=\left( \dfrac{2c+b-3a}{b-a} \right)c \\\ & \Rightarrow S=\dfrac{2c\left( c-a \right)}{b-a}+c \\\ \end{aligned}
Hence we get the sum of the arithmetic progression is S=2c(ca)ba+cS=\dfrac{2c\left( c-a \right)}{b-a}+c.

Note: To solve these types of the question we should know everything about the arithmetic progression. If we observe in our regular lives, we come across arithmetic progression quite often.