Solveeit Logo

Question

Question: The first member of the Balmer series of hydrogen atom has a wavelength of 6561 A∘ . The wavelength ...

The first member of the Balmer series of hydrogen atom has a wavelength of 6561 A∘ . The wavelength of the second member of the Balmer series (in nm) is_____________

Answer

486.0 nm

Explanation

Solution

The Balmer series corresponds to electron transitions to the n1=2n_1=2 energy level in a hydrogen atom. The first member of the Balmer series results from the transition from n2=3n_2=3 to n1=2n_1=2. The second member results from the transition from n2=4n_2=4 to n1=2n_1=2. The Rydberg formula for the wavelength λ\lambda is given by: 1λ=R(1n121n22)\frac{1}{\lambda} = R \left( \frac{1}{n_1^2} - \frac{1}{n_2^2} \right) For the first member (λ1\lambda_1, n1=2n_1=2, n2=3n_2=3): 1λ1=R(122132)=R(1419)=R(9436)=5R36\frac{1}{\lambda_1} = R \left( \frac{1}{2^2} - \frac{1}{3^2} \right) = R \left( \frac{1}{4} - \frac{1}{9} \right) = R \left( \frac{9-4}{36} \right) = \frac{5R}{36} We are given λ1=6561 A\lambda_1 = 6561 \text{ A}^\circ.

For the second member (λ2\lambda_2, n1=2n_1=2, n2=4n_2=4): 1λ2=R(122142)=R(14116)=R(16464)=12R64=3R16\frac{1}{\lambda_2} = R \left( \frac{1}{2^2} - \frac{1}{4^2} \right) = R \left( \frac{1}{4} - \frac{1}{16} \right) = R \left( \frac{16-4}{64} \right) = \frac{12R}{64} = \frac{3R}{16} Now, we can find the ratio of the wavelengths: 1/λ21/λ1=3R/165R/36\frac{1/\lambda_2}{1/\lambda_1} = \frac{3R/16}{5R/36} λ1λ2=316×365=3×94×5=2720\frac{\lambda_1}{\lambda_2} = \frac{3}{16} \times \frac{36}{5} = \frac{3 \times 9}{4 \times 5} = \frac{27}{20} So, λ2=λ1×2027\lambda_2 = \lambda_1 \times \frac{20}{27}. Given λ1=6561 A\lambda_1 = 6561 \text{ A}^\circ: λ2=6561 A×2027=243×20 A=4860 A\lambda_2 = 6561 \text{ A}^\circ \times \frac{20}{27} = 243 \times 20 \text{ A}^\circ = 4860 \text{ A}^\circ To convert to nanometers (nm), we use the conversion 1 A=0.1 nm1 \text{ A}^\circ = 0.1 \text{ nm}: λ2=4860 A×0.1 nm/A=486.0 nm\lambda_2 = 4860 \text{ A}^\circ \times 0.1 \text{ nm/A}^\circ = 486.0 \text{ nm}