Solveeit Logo

Question

Question: The first derivative of the function (\(\sin 2x\cos 2x\cos 3x + \log_{2}2^{x + 3})\) with respect t...

The first derivative of the function

(sin2xcos2xcos3x+log22x+3)\sin 2x\cos 2x\cos 3x + \log_{2}2^{x + 3}) with respect to x at x=πx = \pi is

A

2

B

–1

C

2+2πloge2- 2 + 2^{\pi}\log_{e}2

D

2+loge2- 2 + \log_{e}2

Answer

–1

Explanation

Solution

f(x)=sin2x.cos2x.cos3x+log22x+3f(x) = \sin 2x.\cos 2x.\cos 3x + \log_{2}2^{x + 3}, f(x)=12sin4xcos3x+(x+3)log22f(x) = \frac{1}{2}\sin 4x\cos 3x + (x + 3)\log_{2}2, f(x)=14[sin7x+sinx]+x+3f(x) = \frac{1}{4}\lbrack\sin 7x + \sin x\rbrack + x + 3Differentiate w.r.t. x,

f(x)=14[7cos7x+cosx]+1f^{'}(x) = \frac{1}{4}\lbrack 7\cos 7x + \cos x\rbrack + 1,

f(x)=147cos7x+14cosx+1f^{'}(x) = \frac{1}{4}7\cos 7x + \frac{1}{4}\cos x + 1, f(π)=2+1=1f^{'}(\pi) = - 2 + 1 = - 1.